摘要:
An electronic system including an enclosure and an internal air plenum within the enclosure. At least one component of the electronic system within the enclosure evolves heat and has a surface exposed to the internal air plenum. The enclosure has inlet and outlet ventilation boundaries together with an EHD air mover disposed therein to motivate airflow along a flow path between the inlet and outlet ventilation boundaries, wherein the flow path is substantially excluded from the internal air plenum by a barrier.
摘要:
Structures for reducing the effect of charged surfaces near the electrodes on the performance efficiency of an electrohydrodynamic (EHD) device are disclosed. The potential levels on surfaces of an electronic device near the EHD electrodes are varied with respect to a function of the combination of distance from the emitter and the distance from the collector. The potential levels may be constant, may vary in discrete steps, may be continuously variable along the length between the EHD electrodes and beyond the electrodes, and may vary with respect to time.
摘要:
Reversible flow may be provided in certain EHD device configurations that selectively energize corona discharge electrodes arranged to motivate flows in generally opposing directions. In some embodiments, a first set of one or more corona discharge electrodes is positioned, relative to a first array of collector electrode surfaces, to when energized, motivate flow in a first direction, while second set of one or more corona discharge electrodes is positioned, relative to a second array of collector electrode surfaces, to when energized, motivate flow in a second direction that opposes the first. In some embodiments, the first and second arrays of collector electrode surfaces are opposing surfaces of individual collector electrodes. In some embodiments, the first and second arrays of collector electrode surfaces are opposing surfaces of respective collector electrodes.
摘要:
Reversible flow may be provided in certain EHD device configurations that selectively energize corona discharge electrodes arranged to motivate flows in generally opposing directions. In some embodiments, a first set of one or more corona discharge electrodes is positioned, relative to a first array of collector electrode surfaces, to when energized, motivate flow in a first direction, while second set of one or more corona discharge electrodes is positioned, relative to a second array of collector electrode surfaces, to when energized, motivate flow in a second direction that opposes the first. In some embodiments, the first and second arrays of collector electrode surfaces are opposing surfaces of individual collector electrodes. In some embodiments, the first and second arrays of collector electrode surfaces are opposing surfaces of respective collector electrodes.
摘要:
Embodiments of electrohydrodynamic (EHD) fluid accelerator devices utilize collector electrode structures that promote efficient fluid flow and reduce the probability of arcing by managing the strength of the electric field produced at the forward edges of the collector electrodes. In one application, the EHD devices dissipate heat generated by a thermal source in a thermal management system.
摘要:
Performance of an electrohydrodynamic fluid accelerator device may be improved and adverse events such as sparking or arcing may be reduced based, amongst other things, on electrode geometries and/or positional interrelationships of the electrodes. For example, in a class of EHD devices that employ a longitudinally elongated corona discharge electrode (often, but not necessarily, a wire), a plurality of generally planar, collector electrodes may be positioned so as to present respective leading surfaces toward the corona discharge electrode. The generally planar collector electrodes may be oriented so that their major surfaces are generally orthogonal to the longitudinal extent of the corona discharge electrode. In such EHD devices, a high intensity electric field can be established in the “gap” between the corona discharge electrode and leading surfaces of the collector electrodes.
摘要:
In thermal management systems that employ EHD devices to motivate flow of air through an enclosure, spatial distribution of a ventilation boundary may facilitate reductions in flow resistance by reducing average transit distance for cooling air from an inlet portion of the ventilation boundary to an outlet portion. Some thermal management systems described herein distribute a ventilation boundary over opposing surfaces, adjacent surfaces or even a single surface of an enclosure while providing a short, “U” shaped, “L” shaped or generally straight through flow path. In some cases, spatial distributions of the ventilation boundary facilitate or enable enclosure geometries for which conventional fan or blower ventilation would be impractical. In some cases, provision of multiple portions of the ventilation boundary may allow the thermal management system to tolerate blockage or occlusion of a subset of the inlet and/or outlet portions and, when at least some of such portions are non-contiguous spatially-distributed, tolerance to a single cause of blockage or occlusion is enhanced.
摘要:
An electrohydrodynamic fluid accelerator includes an emitter electrode and leading surfaces of a collector electrode that are substantially exposed to ion bombardment. Heat transfer surfaces downstream of the emitter electrode along a fluid flow path include a first portion not substantially exposed to the ion bombardment that is conditioned with a first ozone reducing material. The leading surfaces of the collector electrode are not conditioned with the first ozone reducing material, but may include a different surface conditioning. The downstream heat transfer surfaces and the leading surfaces can be separately formed and joined to form the unitary structure or can be integrally formed. The electrohydrodynamic fluid accelerator can be used in a thermal management assembly of an electronic device with a heat dissipating device thermally coupled to the conditioned heat transfer surfaces.
摘要:
In thermal management systems that employ EHD devices to motivate flow of air between ventilated boundary portions of an enclosure, it can be desirable to have some heat transfer surfaces participate in electrohydrodynamic acceleration of fluid flow while providing additional heat transfer surfaces that may not. In some embodiments, both collector electrodes and additional heat transfer surfaces are thermally coupled into a heat transfer path. Collector electrodes then contribute both to flow of cooling air and to heat transfer to the air flow so motivated. The collector electrodes and additional heat transfer surfaces may be parts of a unitary, or thermally coupled, structure that is introduced into a flow path at multiple positions therealong. In some embodiments, the collector electrodes and additional heat transfer surfaces may be proximate each other along the flow path. In some embodiments, the collector electrodes and additional heat transfer surfaces may be separate structures.
摘要:
An electrohydrodynamic fluid accelerator includes an emitter electrode and leading surfaces of a collector electrode that are substantially exposed to ion bombardment. Heat transfer surfaces downstream of the emitter electrode along a fluid flow path include a first portion not substantially exposed to the ion bombardment that is conditioned with a first ozone reducing material. The leading surfaces of the collector electrode are not conditioned with the first ozone reducing material, but may include a different surface conditioning. The downstream heat transfer surfaces and the leading surfaces can be separately formed and joined to form the unitary structure or can be integrally formed. The electrohydrodynamic fluid accelerator can be used in a thermal management assembly of an electronic device with a heat dissipating device thermally coupled to the conditioned heat transfer surfaces.