摘要:
A system and method for frequency reuse for wireless point-to-point backhaul. Frequency reuse is enabled through the cancellation of interfering signals generated by interference sources. In one embodiment, a conventional dish antenna is complemented with one or more additional auxiliary antennas (e.g., isotropic). The one or more additional auxiliary antennas enable cancellation of interfering signals whose direction of arrival (DOA) is off the dish antenna's bore-sight.
摘要:
A system and method for frequency reuse for wireless point-to-point backhaul. Frequency reuse is enabled through the cancellation of interfering signals generated by interference sources. In one embodiment, a conventional dish antenna is complemented with one or more additional auxiliary antennas (e.g., isotropic). The one or more additional auxiliary antennas enable cancellation of interfering signals whose direction of arrival (DOA) is off the dish antenna's bore-sight.
摘要:
A system and method for frequency reuse for wireless point-to-point backhaul. Frequency reuse is enabled through the cancellation of interfering signals generated by interference sources. In one embodiment, a conventional dish antenna is complemented with one or more additional auxiliary antennas (e.g., isotropic). The one or more additional auxiliary antennas enable cancellation of interfering signals whose direction of arrival (DOA) is off the dish antenna's bore-sight.
摘要:
A system and method for frequency reuse for wireless point-to-point backhaul. Frequency reuse is enabled through the cancellation of interfering signals generated by interference sources. In one embodiment, a conventional dish antenna is complemented with one or more additional auxiliary antennas (e.g., isotropic). The one or more additional auxiliary antennas enable cancellation of interfering signals whose direction of arrival (DOA) is off the dish antenna's bore-sight.
摘要:
A 5G base station transmitter at least partially precodes data for beam forming, and generates digital precoded baseband signals. Cross product circuitry coupled to the digital precoder, generates digital cross products of the digital precoded baseband signals. Both the baseband signals and the cross products are put through digital-to-analog converters (DACs), then provided to an analog non-linear precoder. The analog non-linear precoder combines the analog baseband signals, the cross products, with pre-distortion and precoder coefficients to generate a signal that is pre-compensated for power amplifier non-linearity. The pre-compensated signal is amplified by the power amplifier and transmitted via a phased antenna array. The number of extra DACs required for inserting pre-distortion when a hybrid digital/analog precoder is used can be limited to approximately N RF ( N RF - 1 ) 2 , where NRF is the number of outputs of the digital precoder. This is significantly fewer than the number of extra DACs used by other methods.
摘要:
A 5G base station transmitter at least partially precodes data for beam forming, and generates digital precoded baseband signals. Cross product circuitry coupled to the digital precoder, generates digital cross products of the digital precoded baseband signals. Both the baseband signals and the cross products are put through digital-to-analog converters (DACs), then provided to an analog non-linear precoder. The analog non-linear precoder combines the analog baseband signals, the cross products, with pre-distortion and precoder coefficients to generate a signal that is pre-compensated for power amplifier non-linearity. The pre-compensated signal is amplified by the power amplifier and transmitted via a phased antenna array. The number of extra DACs required for inserting pre-distortion when a hybrid digital/analog precoder is used can be limited to approximately N RF ( N RF - 1 ) 2 , where NRF is the number of outputs of the digital precoder. This is significantly fewer than the number of extra DACs used by other methods.