Abstract:
Various techniques pertaining to non-coherent noise reduction for audio enhancement on a multi-microphone mobile device are proposed. A processor receives a plurality of signals from a plurality of audio sensors corresponding to a plurality of channels responsive to sensing by the plurality of audio sensors. The processor then performs a non-coherent noise reduction on one or more signals of the plurality of signals to suppress one or more non-coherent noises in each of the one or more signals based on a respective signal-to-noise ratio (SNR) associated with each of the one or more signals. The processor further combines the plurality of signals subsequent the noise reduction to generate an output signal.
Abstract:
An audio device is provided. The audio device includes processing circuitry which is connected to a loudspeaker and a microphone. The processing circuitry is configured to play an echo reference signal from a far end on the loudspeaker, and perform an acoustic echo cancellation (AEC) process using the echo reference signal and an acoustic signal received by the microphone using an AEC adaptive filter. The processing circuitry repeatedly determines a first status of the loudspeaker according to a relation between the played echo reference signal and the received acoustic signal, and transmits a first status signal indicating the first status of the loudspeaker to the far end through a cloud network.
Abstract:
A device is operative to locate a target audio source. The device includes multiple microphones arranged in a predetermined geometry. The device also includes a circuit operative to receive multiple audio signals from each of the microphones. The circuit is operative to estimate respective directions of audio sources that generate at least two of the audio signals; identify candidate audio signals from the audio signals in the directions; match the candidate audio signals with a known audio pattern; and generate an indication of a match in response to one of the candidate audio signals matching the known audio pattern.
Abstract:
A keyword spotting system includes a decoder having a storage device and a decoding circuit. The storage device is used to store a log-likelihood table and a plurality of dynamic programming (DP) tables generated for recognition of a designated keyword. The decoding circuit is used to refer to features in one frame of an acoustic data input to calculate the log-likelihood table and refer to at least the log-likelihood table to adjust each of the DP tables when recognition of the designated keyword is not accepted yet, where the DP tables are reset by the decoding circuit at different frames of the acoustic data input, respectively.
Abstract:
A non-coherent noise reduction method, comprising: (a) receiving a plurality of input audio sensing signals by a processor, wherein the input audio sensing signals correspond to a plurality of channels responsive to sensing by a plurality of audio sensors; (b) detecting whether non-coherent noise exists in at least one of the channels by a non-coherent noise detector; (c) estimating at least one noise power of the non-coherent noise by a noise power estimator, if the non-coherent noise exists in at least one of the channels; (d) deriving at least one noise contour of the non-coherent noise by a noise contour estimator, if the non-coherent noise exists in at least one of the channels; and (e) enhancing the input audio sensing signals according to the noise power and the noise contour if the non-coherent noise exists in at least one of the channels.
Abstract:
A voice wakeup detecting device for an electronic product includes a digital microphone and an application processor. The digital microphone has a function of judging whether a digital voice signal contains a subword according to subword model parameters. If the digital microphone confirms that the digital voice signal contains the subword, the digital microphone generates a first interrupt signal and outputs the digital voice signal. The application processor is enabled in response to the first interrupt signal. The application processor judges whether the digital voice signal contains a keyword according to keyword model parameters. If the application processor confirms that the digital voice signal contains the keyword, the electronic product is waked up from a sleep state to a normal working state under control of the application processor.
Abstract:
The invention provides a system for speech keyword detection and associated method. The system includes a speech keyword detector, an activity predictor and a decision maker. The activity predictor obtains sensor data provided by a plurality of sensors, and processes the sensor data to provide an activity prediction result indicating a probability for whether a user is about to give voice keyword. The decision maker processes the activity prediction result and a preliminary keyword detection result of the speech keyword detection to provide a keyword detection result.
Abstract:
A voice verifying system, which comprises: a microphone, which is always turned on to output at least one voice signal; a speech determining device, for determining if the voice signal is valid or not according to a reference value, wherein the speech determining device passes the voice signal if the voice signal is valid; and a verifying module, for verifying a speech signal generated from the voice signal and for outputting a device activating signal to activate a target device if the speech signal matches a predetermined rule; and a reference value generating device, for generating the reference value according to speech signal information from the verifying module.
Abstract:
An object analyzing method applied to an object analyzing system. The object analyzing method comprises: (a) applying at least one analyzing parameter extracting process according to an object type for an target object, to extract at least one analyzing parameter for the target object; (b) selecting least one analyzing model according to the object type; and (c) applying the analyzing model selected in the step (b), to analyze the analyzing parameter and accordingly generate an analyzing result.
Abstract:
A voice verifying system, which comprises: a microphone, which is always turned on to output at least one input audio signal; a speech determining device, for determining if the input audio signal is valid or not according to a reference value, wherein the speech determining device passes the input audio signal if the input audio signal is valid; and a verifying module, for verifying a speech signal generated from the input audio signal and for outputting a device activating signal to activate a target device if the speech signal matches a predetermined rule; and a reference value generating device, for generating the reference value according to speech signal information from the verifying module.