Abstract:
A medical lead includes a coiled conductor portion that defines at least part of an outer surface of the lead and an expandable coiled fixation element that defines at least a part of the outer surface of the lead. The expandable coiled fixation element is configured to expand from a first dimension in a first state to a second dimension in a second state in a direction away from the coiled conductor portion. In some examples, the expandable coiled fixation element comprises a shape memory material.
Abstract:
Medical leads have one or more openly coiled filars and a distal body coupled to the openly coiled filars. The openly coiled filars provide a lead with compliance and elasticity while the distal body provides the firmness needed for placement and support of the electrodes. The openly coiled filars may transition to a linear distal portion that extends to the distal body, and the distal body may have proximal tines that fold proximally to become adjacent to the linear distal portion of the filars. The openly coiled filars may instead extend to the distal body and the proximal tines may be laterally arced to then fold against the lateral surface of the coiled filars. The tines may fold distally during explantation to allow the distal body to release and exit the body.
Abstract:
In some examples, controlling delivery of therapy includes using an implantable medical device comprising at least one electrode. Processing circuitry of a system comprising the device may receive, from an application running on a patient personal device, a patient request entered by the patient into the application. The processing circuitry may further determine, based on the patient request, a requested value of a therapy parameter, compare the requested value to information stored in a memory of the medical device system, the information indicating one or more allowable values of the therapy parameter, determine that the requested value is one of the allowable values based on the comparison of the requested value of the therapy parameter to the one or more allowable values, and control the implantable medical device to deliver cardiac pacing via the at least one electrode according to the requested value for a period of time.
Abstract:
Medical leads have one or more openly coiled filars and a distal body coupled to the openly coiled filars. The openly coiled filars provide a lead with compliance and elasticity while the distal body provides the firmness needed for placement and support of the electrodes. The openly coiled filars may transition to a linear distal portion that extends to the distal body, and the distal body may have proximal tines that fold proximally to become adjacent to the linear distal portion of the filars. The openly coiled filars may instead extend to the distal body and the proximal tines may be laterally arced to then fold against the lateral surface of the coiled filars. The tines may fold distally during explantation to allow the distal body to release and exit the body.
Abstract:
Connector assemblies that are separate from medical lead extensions provide features such as bores for receiving both a medical lead and a medical lead extension and provide electrical connections between connectors of the leads and connectors of the lead extensions. Connector assemblies may include additional features such as contours and wings that reduce subcutaneous erosion. Connector assemblies may also include retention structures such as movable clips that are moved into engagement with leads and lead extensions to retain them within the connector assembly. Integrated lead extension connectors may also include contours and wings as well as retention structures including movable clips.
Abstract:
Connector assemblies that are separate from medical lead extensions provide features such as bores for receiving both a medical lead and a medical lead extension and provide electrical connections between connectors of the leads and connectors of the lead extensions. Connector assemblies may include additional features such as contours and wings that reduce subcutaneous erosion. Connector assemblies may also include retention structures such as movable clips that are moved into engagement with leads and lead extensions to retain them within the connector assembly. Integrated lead extension connectors may also include contours and wings as well as retention structures including movable clips.
Abstract:
In some examples, controlling delivery of therapy includes using an implantable medical device comprising at least one electrode. Processing circuitry of a system comprising the device may receive, from an application running on a patient personal device, a patient request entered by the patient into the application. The processing circuitry may further determine, based on the patient request, a requested value of a therapy parameter, compare the requested value to information stored in a memory of the medical device system, the information indicating one or more allowable values of the therapy parameter, determine that the requested value is one of the allowable values based on the comparison of the requested value of the therapy parameter to the one or more allowable values, and control the implantable medical device to deliver cardiac pacing via the at least one electrode according to the requested value for a period of time.
Abstract:
Medical leads have one or more openly coiled filars and a distal body coupled to the openly coiled filars. The openly coiled filars provide a lead with compliance and elasticity while the distal body provides the firmness needed for placement and support of the electrodes. The openly coiled filars may transition to a linear distal portion that extends to the distal body, and the distal body may have proximal tines that fold proximally to become adjacent to the linear distal portion of the filars. The openly coiled filars may instead extend to the distal body and the proximal tines may be laterally arced to then fold against the lateral surface of the coiled filars. The tines may fold distally during explantation to allow the distal body to release and exit the body.
Abstract:
Connector assemblies that are separate from medical lead extensions provide features such as bores for receiving both a medical lead and a medical lead extension and provide electrical connections between connectors of the leads and connectors of the lead extensions. Connector assemblies may include additional features such as contours and wings that reduce subcutaneous erosion. Connector assemblies may also include retention structures such as movable clips that are moved into engagement with leads and lead extensions to retain them within the connector assembly. Integrated lead extension connectors may also include contours and wings as well as retention structures including movable clips.
Abstract:
Connector assemblies that are separate from medical lead extensions provide features such as bores for receiving both a medical lead and a medical lead extension and provide electrical connections between connectors of the leads and connectors of the lead extensions. Connector assemblies may include additional features such as contours and wings that reduce subcutaneous erosion. Connector assemblies may also include retention structures such as movable clips that are moved into engagement with leads and lead extensions to retain them within the connector assembly. Integrated lead extension connectors may also include contours and wings as well as retention structures including movable clips.