Abstract:
A temporary medical electrical lead includes a connector pin and a single conductor coil. The coil being close-wound and having no turns of the coil distal portion being mechanically coupled together. The coil distal portion translates a force of no greater than 0.1 lbf (0.4 N) when strained 400%.
Abstract:
A shield located within an implantable medical lead may be terminated in various ways at a metal connector. The shield may be terminated by various joints including butt, scarf, lap, or other joints between insulation layers surrounding the lead and an insulation extension. The shield may terminate with a physical and electrical connection to a single metal connector. The shield may terminate with a physical and electrical connection by passing between an overlapping pair of inner and outer metal connectors. The metal connectors may include features such as teeth or threads that penetrate the insulation layers of the lead. The shield may terminate with a physical and electrical connection by exiting a jacket of a lead adjacent to a metal connector and lapping onto the metal connector.
Abstract:
Medical leads have one or more openly coiled filars and a distal body coupled to the openly coiled filars. The openly coiled filars provide a lead with compliance and elasticity while the distal body provides the firmness needed for placement and support of the electrodes. The openly coiled filars may transition to a linear distal portion that extends to the distal body, and the distal body may have proximal tines that fold proximally to become adjacent to the linear distal portion of the filars. The openly coiled filars may instead extend to the distal body and the proximal tines may be laterally arced to then fold against the lateral surface of the coiled filars. The tines may fold distally during explantation to allow the distal body to release and exit the body.
Abstract:
Conductors within an implantable medical lead that carry stimulation signal signals are at least partially embedded within a lead body of the medical lead over at least a portion of the length of the conductors while being surrounded by a radio frequency (RF) shield. A space between the shield and the conductors is filled by the presence of the lead body material such that body fluids that infiltrate the lead over time cannot pool in the space between the shield and the conductors. The dielectric properties of the lead body are retained and the capacitive coupling between the shield and the conductors continues to be inhibited such that current induced on the shield is inhibited from being channeled onto the conductors. Heating at the electrodes of the medical lead is prevented from becoming excessive.
Abstract:
Medical leads include a lumen body at an end of the lead, and the lumen body includes multiple filar lumens. The lumen body is joined to a lead body, and electrical connectors are longitudinally spaced along the lumen body. Filars within the filar lumens are directed through filar passageways within the lumen body to attach to the electrical connectors on the lumen body. The filar passageways may be aligned with the filar lumens, and slots within the electrical connectors may be aligned with the filar passageways to facilitate assembly. The lumen body may provide additional stiffness to the end of the lead where the lumen body is located to facilitate lead insertion into the medical device. The filar lumens of the lumen body may have a longitudinally straight configuration so that the portions of filars within the filar lumens are held in a longitudinally straight configuration.
Abstract:
Medical leads include a lumen body at an end of the lead, and the lumen body includes multiple filar lumens. The lumen body is joined to a lead body, and electrical connectors are longitudinally spaced along the lumen body. Filars within the filar lumens are directed through filar passageways within the lumen body to attach to the electrical connectors on the lumen body. The filar passageways may be aligned with the filar lumens, and slots within the electrical connectors may be aligned with the filar passageways to facilitate assembly. The lumen body may provide additional stiffness to the end of the lead where the lumen body is located to facilitate lead insertion into the medical device. The filar lumens of the lumen body may have a longitudinally straight configuration so that the portions of filars within the filar lumens are held in a longitudinally straight configuration.
Abstract:
Conductors within an implantable medical lead that carry stimulation signal signals are at least partially embedded within a lead body of the medical lead over at least a portion of the length of the conductors while being surrounded by a radio frequency (RF) shield. A space between the shield and the conductors is filled by the presence of the lead body material such that body fluids that infiltrate the lead over time cannot pool in the space between the shield and the conductors. The dielectric properties of the lead body are retained and the capacitive coupling between the shield and the conductors continues to be inhibited such that current induced on the shield is inhibited from being channeled onto the conductors. Heating at the electrodes of the medical lead is prevented from becoming excessive.
Abstract:
Conductors within an implantable medical lead that carry stimulation signal signals are at least partially embedded within a lead body of the medical lead over at least a portion of the length of the conductors while being surrounded by a radio frequency (RF) shield. A space between the shield and the conductors is filled by the presence of the lead body material such that body fluids that infiltrate the lead over time cannot pool in the space between the shield and the conductors. The dielectric properties of the lead body are retained and the capacitive coupling between the shield and the conductors continues to be inhibited such that current induced on the shield is inhibited from being channeled onto the conductors. Heating at the electrodes of the medical lead is prevented from becoming excessive.
Abstract:
A shield located within an implantable medical lead may be terminated in various ways at a metal connector. The shield may be terminated by various joints including butt, scarf, lap, or other joints between insulation layers surrounding the lead and an insulation extension. The shield may terminate with a physical and electrical connection to a single metal connector. The shield may terminate with a physical and electrical connection by passing between an overlapping pair of inner and outer metal connectors. The metal connectors may include features such as teeth or threads that penetrate the insulation layers of the lead. The shield may terminate with a physical and electrical connection by exiting a jacket of a lead adjacent to a metal connector and lapping onto the metal connector.
Abstract:
Conductors within an implantable medical lead that carry stimulation signal signals are at least partially embedded within a lead body of the medical lead over at least a portion of the length of the conductors while being surrounded by a radio frequency (RF) shield. A space between the shield and the conductors is filled by the presence of the lead body material such that body fluids that infiltrate the lead over time cannot pool in the space between the shield and the conductors. The dielectric properties of the lead body are retained and the capacitive coupling between the shield and the conductors continues to be inhibited such that current induced on the shield is inhibited from being channeled onto the conductors. Heating at the electrodes of the medical lead is prevented from becoming excessive.