摘要:
Embodiments provide methods and systems for treating aneurysms using filling structures filled with a curable medium. An embodiment of a method comprises positioning at least one double-walled filling structure across the aneurysm and filling the structure(s) with a filling medium so that an outer wall conforms to the inside of the aneurysm and an inner wall forms a generally tubular lumen to provide for blood flow. The lumen is supported with a balloon or other expandable device while and/or after filling. The pressure within the structure and/or in the space between an external wall of the structure and the aneurysm wall is monitored and a flow of the medium into the structure is controlled responsive to the pressure. The pressure can also be used to determine a filling endpoint. The medium is hardened while the lumen remains supported by the balloon. The balloon is then removed after the medium hardens.
摘要:
Aneurysms are treated by filling at least one double-walled filling structure with a curable medium within the aneurysm. The filling structures may be delivered over balloon deployment mechanisms in order to shape and open tubular lumens therethrough. Scaffolds are placed into the tubular lumens in order to help maintain the shape, anchor the filling structures in place, and provide improved blood flow transition into and out of the tubular lumens.
摘要:
Aneurysms are treated by filling at least one double-walled filling structure with a curable medium within the aneurysm. The filling structures may be delivered over balloon deployment mechanisms in order to shape and open tubular lumens therethrough. Scaffolds are placed into the tubular lumens in order to help maintain the shape, anchor the filling structures in place, and provide improved blood flow transition into and out of the tubular lumens.
摘要:
A system for treating an aneurysm in a blood vessel comprises a docking scaffold having with upstream and downstream ends, and a central passageway therebetween. The upstream end engages the blood vessel upstream of the aneurysm. A portion of a first and second scaffolds are slidably received in the central passageway such that an outside surface of the first and second scaffolds engage an inside surface of the docking scaffold. A double-walled filling structure has outer and inner walls and the filling structure is adapted to be filled with a hardenable fluid filling medium so that the outer wall conforms to an inside surface of the aneurysm and the inner wall forms a substantially tubular lumen to provide a path for blood flow therethrough. The double-walled filling structure is coupled with at least one of the first and second leg scaffolds in expanded configuration.
摘要:
Aneurysms are treated by filling at least one double-walled filling structure with a curable medium within the aneurysm. The filling structures may be delivered over balloon deployment mechanisms in order to shape and open tubular lumens therethrough. Scaffolds are placed into the tubular lumens in order to help maintain the shape, anchor the filling structures in place, and provide improved blood flow transition into and out of the tubular lumens.
摘要:
Embodiments provide methods and systems for treating aneurysms using filling structures filled with a curable medium. An embodiment of a method comprises positioning at least one double-walled filling structure across the aneurysm and filling the structure(s) with a filling medium so that an outer wall conforms to the inside of the aneurysm and an inner wall forms a generally tubular lumen to provide for blood flow. The lumen is supported with a balloon or other expandable device while and/or after filling. The pressure within the structure and/or in the space between an external wall of the structure and the aneurysm wall is monitored and a flow of the medium into the structure is controlled responsive to the pressure. The pressure can also be used to determine a filling endpoint. The medium is hardened while the lumen remains supported by the balloon. The balloon is then removed after the medium hardens.
摘要:
Embodiments provide methods and systems for treating aneurysms using filling structures filled with a curable medium. An embodiment of a method comprises positioning at least one double-walled filling structure across the aneurysm and filling the structure(s) with a filling medium so that an outer wall conforms to the inside of the aneurysm and an inner wall forms a generally tubular lumen to provide for blood flow. The lumen is supported with a balloon or other expandable device while and/or after filling. The pressure within the structure and/or in the space between an external wall of the structure and the aneurysm wall is monitored and a flow of the medium into the structure is controlled responsive to the pressure. The pressure can also be used to determine a filling endpoint. The medium is hardened while the lumen remains supported by the balloon. The balloon is then removed after the medium hardens.
摘要:
Aneurysms are treated by filling a double-walled filling structure with a curable medium. The structures may be delivered over balloon deployment mechanisms in order to shape and open tubular lumens therethrough. The filling structures are preferably used in pairs for providing flow into the iliac arteries when treating abdominal aortic aneurysm.
摘要:
Material transport catheters and methods for their use rely on rotation of an impeller within a catheter body and a clearing element for preventing buildup of materials at the opening of the catheter body. The impeller preferably comprises an inner tube or shaft having a helical rotor formed over an outer surface thereof. The clearing element may comprise a free end of a structure near the distal end of the catheter body for disrupting clot, wherein the free end of the structure extends into the distal opening of the catheter body to break up materials as the impeller is rotated. Alternatively, the clearing element may comprise a cutting member disposed at the distal opening of the catheter body.
摘要:
A delivery catheter for a radially compressible tubular prosthesis comprises an elongate shaft slidably received within an elongate sheath. The prosthesis is carried over the distal end of the shaft where it is contained in a radially compressed configuration by the sheath. After introducing the catheter to a desired target location within a body lumen, the prosthesis may be released by proximally retracting the sheath. The prosthesis will remain anchored to the shaft during at least part of the release procedure, permitting the user to recapture the prosthesis by distally advancing the sheath.