摘要:
A fluid detection system and method is disclosed having sensor elements 66 comprising wire leads 68 and electrodes 74 electrically insulated from the stack 16, and positioned such that a measurable voltage is present between the sensor elements 66 only when fluid in water exit manifold space 54 is in contact with both of the electrodes 74. Sensor element 76 may also be utilized in combination with one or both sensor elements 66, and comprises a wire lead 68 operably connected to a pressure plate 60. Because pressure plate 60 is electrically conductive and in electrical communication with stack 16, a voltage measurable between sensor element 76 and sensor element 66 can be used to indicate that fluid is in contact with electrode 74 of sensor element 66. The placement of the electrodes 78, 80 can further indicate a level of fluid or flow of fluid through stack 16. Sensor elements 66 and 76 may communicate with a controller 82, which in response to a measured voltage, can be used to automatically regulate the fluid balance in stack 16 via water management system 88.
摘要:
An example seal assembly includes a first seal that is configured to be placed between a fuel cell manifold and a fuel cell stack. The first seal establishes a recessed area within a side of the first seal that faces the fuel cell stack. The fuel cell seal assembly further includes a second seal that is configured to be placed between the first seal and the fuel cell stack within the recessed area. An example method of sealing a fuel cell interface includes holding a first seal within a groove established within a manifold and holding a second seal within a recessed area established within the second seal. The method limits flow of a fuel cell fluid using a first seal and the second seal.
摘要:
A fuel cell includes an inlet manifold that communicates with an inlet pipe. The inlet pipe enters the inlet manifold at a port. A baffle is positioned about the port. The baffle captures and directs fuel away from a side of the inlet manifold that will face a cell stack. A fuel cell incorporating such an inlet manifold is also claimed.
摘要:
An example method of securing a bond film to a fuel cell component includes positioning the bond film adjacent the fuel cell component and melting the bond film using thermal energy from an injection molded seal.
摘要:
Water transfer means (86) transfers fuel cell product water from a cathode water transport plate (34) to an anode water transport plate (23) of the same or a different fuel cell, wholly within a fuel cell stack (50), (disposed within each fuel cell of a fuel cell stack (50)). The water transfer means may be a very high permeability proton exchange membrane (21a), a water transfer band (90) such as silicon carbide particles, a porous water transfer zone (107), with or without a flow restrictor (109), internal water manifolds (112, 113) which extend through an entire fuel cell stack, or internal manifolds (112a, 112b, 112c, 112d, 113a, 113b, 113c, 113d) which extend only through groups of cells between solid plates (71). As an example, 90% product water may be removed as vapor in oxidant exhaust, 30% may be transferred through the water transfer means (86) from cathode water transport plates to anode water transport plates, of which 20% may flow from the anode to the cathode, the net result of osmosis and proton drag, and 10% may exit the anode water transport plates as liquid water.
摘要:
Ejectors (22, 59) are configured to receive fresh fuel gas at the motive inlet (27, 60) and to receive fuel recycle gas at the suction inlet (29, 64, 65). Each ejector is disposed either a) within a fuel inlet/outlet manifold (13, 109) or adjacent to and integral with the fuel inlet/outlet manifold. The ejector draws fuel recycle gas directly from the fuel outlet manifold and, after mixing with fresh fuel, is expanded (34, 76) to lower the pressure and is then fed directly into the fuel inlet manifold (14, 80, 109). The ejector may be within an external manifold (13, 92) or an internal manifold (109). The ejector (59) may be formed of perforations clear through a plate (80), which is closed on either side by other plates (83, 85), or the ejector may be formed by suitable sculpture of fuel cells (12) having internal fuel inlet (109) and fuel outlet (15) manifolds.
摘要:
An example method of securing a bond film to a fuel cell component includes positioning the bond film adjacent the fuel cell component and melting the bond film using thermal energy from an injection molded seal.
摘要:
An exemplary fuel cell assembly includes a cell stack having a plurality of cells. The cell stack has an outermost plate at each of two opposite ends of the cell stack. An end plate is adjacent the outermost plate at each of the opposite ends. A plurality of anti-rotation members at each of the opposite ends prevent relative movement between the outermost plates and the end plates. The anti-rotation members at each end are at least partially received into the end plate at the corresponding end. The anti-rotation members at each end are only partially received into the outermost plate at the corresponding end without extending through the outermost plate.
摘要:
A fuel cell includes an inlet manifold that communicates with an inlet pipe. The inlet pipe enters the inlet manifold at a port. A baffle is positioned about the port. The baffle captures and directs fuel away from a side of the inlet manifold that will face a cell stack. A fuel cell incorporating such an inlet manifold is also claimed.
摘要:
Ejectors (22, 59) are configured to receive fresh fuel gas at the motive inlet (27, 60) and to receive fuel recycle gas at the suction inlet (29, 64, 65). Each ejector is disposed either a) within a fuel inlet/outlet manifold (13, 109) or adjacent to and integral with the fuel inlet/outlet manifold. The ejector draws fuel recycle gas directly from the fuel outlet manifold and, after mixing with fresh fuel, is expanded (34, 76) to lower the pressure and is then fed directly into the fuel inlet manifold (14, 80, 109). The ejector may be within an external manifold (13, 92) or an internal manifold (109). The ejector (59) may be formed of perforations clear through a plate (80), which is closed on either side by other plates (83, 85), or the ejector may be formed by suitable sculpture of fuel cells (12) having internal fuel inlet (109) and fuel outlet (15) manifolds.