摘要:
The invention relates to a circuit arrangement, comprising: a functional circuit with m (m=1, 2, . . . ) data inputs and n (n=1, 2, . . . ) data outputs for processing at least one m-dimensional binary data input (x1, . . . , xm) to form an n-dimensional data output (y1, . . . , yn), wherein the functional circuit comprises at least one combinatorial circuit part, at least two registers with a word length k (k=1, 2, . . . ; k≦n) which are coupled to at least some of the n data outputs of the functional circuit in order to store output values (y=y1, . . . , yk; y′=y′1, . . . , y′k) which are duplicated with respect to one another or are duplicated with bit-by-bit inversion with respect to one another, said output values being derived from the n-dimensional data output (y1, . . . , yn) of the functional circuit, at least one corrector with an input word length 2k and an output word length k, which is coupled to data outputs of the at least two registers and supplies a k-dimensional corrected data output (y[k](korr)=y1(korr), . . . , yk(korr)), and an error detection circuit for detecting errors during operation of at least one of the aforementioned circuit elements: the functional circuit, the at least two registers and the corrector.
摘要:
The invention relates to a circuit arrangement, comprising: a functional circuit with m (m=1, 2, . . . ) data inputs and n (n=1, 2, . . . ) data outputs for processing at least one m-dimensional binary data input (x1, . . . , xm) to form an n-dimensional data output (y1, . . . , yn), wherein the functional circuit comprises at least one combinatorial circuit part, at least two registers with a word length k (k=1, 2, . . . ; k≦n) which are coupled to at least some of the n data outputs of the functional circuit in order to store output values (y=y1, . . . , yk; y′=y′1, . . . , y′k) which are duplicated with respect to one another or are duplicated with bit-by-bit inversion with respect to one another, said output values being derived from the n-dimensional data output (y1, . . . , yn) of the functional circuit, at least one corrector with an input word length 2k and an output word length k, which is coupled to data outputs of the at least two registers and supplies a k-dimensional corrected data output (y[k](korr)=y1(korr), . . . , yk(korr)), and an error detection circuit for detecting errors during operation of at least one of the aforementioned circuit elements: the functional circuit, the at least two registers and the corrector.
摘要:
The invention relates to a circuit for comparing two n-digit binary data words x[1](t), . . . , x[n](t) and x′[1](t), . . . , x′[n](t), which in the error-free case are either identical or inverted bit-by-bit with respect to each other, with a series connection of a combinatorial circuit for implementing a first combinatorial function, a controllable register and a combinatorial circuit for implementing another combinatorial function.
摘要:
The invention relates to a circuit for comparing two n-digit binary data words x[1](t), . . . , x[n](t) and x′[1](t), . . . , x′[n](t), which in the error-free case are either identical or inverted bit-by-bit with respect to each other, with a series connection of a combinatorial circuit for implementing a first combinatorial function, a controllable register and a combinatorial circuit for implementing another combinatorial function.
摘要:
A circuit arrangement is formed as follows. A combinational circuit has n binary inputs E1, . . . , En for inputting n (n≧2) information bits x1, . . . , xn and m binary outputs for outputting m (m≧1) check bits c1, . . . , cm. The combinational circuit is configured for realizing a Boolean function ci=fi(xi1, . . . , xini) for i=1, . . . , m at the i-th output for determining a check bit ci, wherein the set {xi1, . . . , xini} at the ni information bits that determine the check bit ci is a subset of all n information bits {x1, . . . , xn}. The combinational circuit is furthermore configured for realizing a first Boolean function f1(x11, . . . , x1n1) of the form c1=f1(x11, . . . , x1n1)=f11(x11, x12) XOR f12(x13, x14) XOR . . . XOR f1k1(x1(n1−1), x1n1) at a first output for outputting a first check bit c1, wherein n1 is an even number where n1≧2 and 2 k1=n1 and the Boolean functions f11(x11, x12), . . . , f1k1(x1(n1−1), x1n1) are in each case nonlinear Boolean functions of two variables which can be realized by logic gates having two inputs and one output, wherein the logic gates each have a controlling value c11, . . . , c1k1.
摘要:
A circuit arrangement is formed as follows. A combinational circuit has n binary inputs E1, . . . , En for inputting n (n≧2) information bits x1, . . . , xn and m binary outputs for outputting m (m≧1) check bits c1, . . . , cm. The combinational circuit is configured for realizing a Boolean function ci=fi(xi1, . . . , xini) for i=1, . . . , m at the i-th output for determining a check bit ci, wherein the set {xi1, . . . , xini} at the ni information bits that determine the check bit ci is a subset of all n information bits {x1, . . . , xn}. The combinational circuit is furthermore configured for realizing a first Boolean function f1(x11, . . . , x1n1) of the form c1=f1(x11, . . . , x1n1)=f11(x11, x12) XOR f12(x13, x14) XOR . . . XOR f1k1(x1(n1−1), x1n1) at a first output for outputting a first check bit c1, wherein n1 is an even number where n1≧2 and 2 k1=n1 and the Boolean functions f11(x11, x12), . . . , f1k1(x1(n1−1), x1n1) are in each case nonlinear Boolean functions of two variables which can be realized by logic gates having two inputs and one output, wherein the logic gates each have a controlling value c11, . . . , c1k1.