Abstract:
Disclosed are hypertension systems and related methods that include a blood pressure sensor located or implanted under the skin of a patient, and electronics, which may have the size and shape of a wrist watch, for example, that monitors the blood pressure of the patient by communicating with the implanted sensor.
Abstract:
Aspects of the present invention determine the resonant frequency of a sensor by obtaining sensor signals in response to three energizing signals, measuring the phase of each sensor signal, and using a group phase delay to determine the resonant frequency. The phase difference between the first and second signal is determined as a first group phase delay. The phase difference between the second and third signal is determined as a second group phase delay. The first group phase delay and second group phase delay are compared. Based on the comparison, the system may lock on the resonant frequency of the sensor or adjust a subsequent set of three energizing signals.
Abstract:
The present invention determines the resonant frequency of a wireless sensor by adjusting the phase and frequency of an energizing signal until the frequency of the energizing signal matches the resonant frequency of the sensor. The system energizes the sensor with a low duty cycle, gated burst of RF energy having a predetermined frequency. The system receives the ring down response of the sensor and determines the resonant frequency of the sensor, which is used to calculate a physical parameter. The system uses a pair of phase locked loops to adjust the phase and the frequency of the energizing signal. The system identifies false locks by detecting an unwanted beat frequency in the coupled signal, as well as determining whether the coupled signal exhibits pulsatile characteristics that correspond to a periodic physiological characteristic, such as blood pressure.
Abstract:
Aspects and embodiments of the present invention provide a loosely-coupled oscillator including a sensor circuit and an electronic device that are not physically connected. In some embodiments, the electronic device includes an amplifier stage and a feedback network and the sensor circuit includes one or more LC circuits. When electromagnetically connected, the sensor circuit and electronic device form an oscillator that is adapted to output an oscillation signal. The resonant frequency of the sensor circuit can be obtained based on the oscillation signal. The sensor circuit may be implanted into an object and the resonant frequency of the sensor circuit can be used to determine characteristics of the object.
Abstract:
An electrically heated vacuum furnace has a plurality of heating elements (13) distributed in an array extending within the furnace. This allows accurate control of the application of radiant heat energy from the elements (13) of the array to articles (10) within the furnace. The elements (13) are preferably disposed spaced apart across the width of the furnace.
Abstract:
A communication system for communicating with an implanted wireless sensor is provided. A transmit antenna element can propagate an energizing signal onto a communication medium and a receive antenna element can recover a responsive implanted sensor response signal. The antenna box includes a power amplifier for amplifying the energizing signal and timing regeneration circuitry for detecting an end to signals and outputting control signals for selecting mode operation. The antenna box can receive the energizing signal from the antenna cable in a transmit mode and provide the implanted sensor response signal to the antenna cable in a receive mode. The antenna box can communicate with an electronic box and/or conversion box that provide and receive signals and provide power via the antenna cable.
Abstract:
The present invention determines the resonant frequency of a wireless sensor by adjusting the phase and frequency of an energizing signal until the frequency of the energizing signal matches the resonant frequency of the sensor. The system energizes the sensor with a low duty cycle, gated burst of RF energy having a predetermined frequency. The system receives the ring down response of the sensor and determines the resonant frequency of the sensor, which is used to calculate a physical parameter. The system uses a pair of phase locked loops to adjust the phase and the frequency of the energizing signal. The system identifies false locks by detecting an unwanted beat frequency in the coupled signal, as well as determining whether the coupled signal exhibits pulsatile characteristics that correspond to a periodic physiological characteristic, such as blood pressure.
Abstract:
A circuit and method for providing temperature stability in an FM quadrature detector. The circuit includes a feedback branch that feeds a portion of the dc output voltage to a varactor diode that is connected in parallel with a capacitor of an LC circuit in the quadrature detector. When the ambient temperature of the LC circuit of the quadrature detector changes, the resonant frequency shifts from the desired center value and a dc voltage is introduced at the output of the quadrature detector. The dc voltage is input to the varactor diode via the feedback circuit branch, and the capacitance of the varactor diode, which is dependent on the dc voltage applied to it, causes the overall capacitance of the LC circuit to change. The change in overall capacitance of the LC circuit caused by the capacitance of the varactor diode causes the resonant frequency of the quadrature detector to shift to be more closely maintained at the desired center frequency. In this manner, the unwanted dc voltage caused by ambient temperature variations is reduced or eliminated.
Abstract:
Disclosed are hypertension systems and related methods that include a blood pressure sensor located or implanted under the skin of a patient, and electronics, which may have the size and shape of a wrist watch, for example, that monitors the blood pressure of the patient by communicating with the implanted sensor.
Abstract:
The present invention determines the resonant frequency of a wireless sensor by adjusting the phase and frequency of an energizing signal until the frequency of the energizing signal matches the resonant frequency of the sensor. The system energizes the sensor with a low duty cycle, gated burst of RF energy having a predetermined frequency. The system receives the ring down response of the sensor and determines the resonant frequency of the sensor, which is used to calculate a physical parameter. The system uses a pair of phase locked loops to adjust the phase and the frequency of the energizing signal. The system identifies false locks by detecting an unwanted beat frequency in the coupled signal, as well as determining whether the coupled signal exhibits pulsatile characteristics that correspond to a periodic physiological characteristic, such as blood pressure.