Abstract:
A method of using of a level meter employing the radar principle, serving to measure the fill level of a medium in a container and incorporating an electric conductor system for conducting an electromagnetic signal into the container and returning reflected components of the electromagnetic signal from the container, the electric conductor system terminating at a predefined level in the container. In practicing the method a variation of the component of the electromagnetic signal reflected at the container-oriented end of the conductor system is utilized as an indicator of the attainment of the predefined fill level by the medium. This permits the detection of very small amounts of a medium for instance in the monitoring of drain pipes, spillway basins or leak-detection systems.
Abstract:
A level meter employs the radar concept for measuring the fill level of a medium in a container and incorporates an electric conductor system for conducting an electromagnetic signal into the container and returning reflected components of the electromagnetic signal from the container. Here, the electric conductor assembly is integrated into a wall of the container. The result is a universally employable electric conductor assembly so configured as to be unobstructed by built-in structures in the container such as agitators, intake pipe fittings or discharge connectors.
Abstract:
A sampling circuit for sequential sampling of a broadband periodic input signal having a field effect transistor as a nonlinear component to which a pulsed-shaped sampling signal is supplied, by which sampling is activated so that an output signal is produced. In this way, a sampling circuit is attained which is economical, technically durable and which can be used in a versatile and simple manner.
Abstract:
A level meter employs the radar concept for measuring the fill level of a medium in a container and incorporates an electric conductor system for conducting an electromagnetic signal into the container and returning reflected components of the electromagnetic signal from the container. Here, the electric conductor assembly is integrated into a wall of the container. The result is a universally employable electric conductor assembly so configured as to be unobstructed by built-in structures in the container such as agitators, intake pipe fittings or discharge connectors.
Abstract:
In an antenna for a level meter employing the radar principle, a fastening device is provided for detachably mounting a dielectric insert in the antenna. The fastening device may be a continuous clamping collar that clamps the dielectric insert in place in the antenna. This offers a simple, universally employable possibility for fastening a dielectric insert in the antenna.
Abstract:
A level meter, employing the radar principle for measuring the fill level of a medium in a container, includes a signal transmitter serving to transmit an electromagnetic signal, an electric conductor system for conducting the electromagnetic signal into the container and returning reflected components of the electromagnetic signal from the container, and a signal receiver serving to receive the reflected components of the electromagnetic signal. An electric conductor system is provided at its upper end with a suspension by which it is attached to a device on the container. A tensile-load testing device is placed between the suspension and at least a part of the electric conductor system, featuring a break point for the electromagnetic signal, with the distance between the break point and the signal transmitter or the signal receiver varying as a function of the tensile load bearing on the conductor system. This permits easy monitoring of the tensile forces to which the conductor system and the suspension are exposed, so that any damage to these devices as a result of excessive loads can be prevented.
Abstract:
A method for generating short electric pulses, comprising the steps of generating a control pulse, feeding the control pulse to a bipolar transistor, which subsequently emits an output signal with a steep switch-off side by exploiting the charge storage effect of the bipolar transistor, and differentiating the output signal with the steep switch-off side so that short primary pulses are generated. An electric pulse generator is also disclosed.
Abstract:
A frequency synthesizer for a time base generator of a level measuring device which works according to the radar principle, with at least one first output for output of a first frequency signal, with at least one second output for output of a second frequency signal, and with a reference oscillator for producing a reference frequency signal, the first frequency signal and the second frequency signal having a small difference frequency relative to one another, the first frequency signal being producible by interaction of the reference oscillator with a direct digital synthesizer. The first frequency signal and second frequency signal can be generated with especially low noise by the second frequency signal being derived from the reference oscillator without interconnection of a direct digital synthesizer and the direct digital synthesizer being operated such that only a noise spectrum is produced which is at least partially minimized.
Abstract:
A frequency synthesizer, especially for use with a time-base generator of a fill-level meter employing the radar principle is designed to output a first frequency signal and a second frequency signal at mutually slightly different frequencies. The synthesizer incorporates a reference oscillator operating at a reference frequency and a control oscillator regulated at a control frequency. A first frequency divider with a division factor V1 is connected in line with the reference oscillator and a second frequency divider with the division factor V2 is connected in line with the control oscillator, which frequency dividers serve to output the first frequency signal and the second frequency signal, respectively. The result is a stable frequency synthesizer with a large phase-control bandwidth and consequently an extremely short transient response time as well as broad-band phase-noise suppression. A method for operating the synthesizer is also disclosed.
Abstract:
A dielectric antenna (1) having at least one supply element (2) and at least one lens (3) formed of a dielectric material. The dielectric antenna makes it possible to measure the surface of a medium with an essentially consistent measuring accuracy in that the lens (3) has an outer component (4) and an inner component (5). The outer component (4) has a radiating surface (6) that is spherical and an inner surface (7) that is spherical, and the inner component (5) has a contact surface (8) that spherical. Furthermore, the antenna is usable as part of a fill level sensor operating on the radar principle.