Abstract:
A numerically controlled oscillator system for maintaining a consistent phase reference while switching data rates may include a numerically controlled oscillator (NCO) circuit. The NCO circuit may include a phase accumulator, a phase-to-signal mapping circuit, and a first free-running counter. The phase accumulator may receive a new phase value as an input in response to an update signal. The phase-to-signal mapping circuit may map a value from the phase accumulator to a periodic signal. The first free-running counter may continue counting, without being reset, while the numerically controlled oscillator system is switching digital data rates. The first free-running counter may be configured to provide the new phase value to the phase accumulator using a representation of a counter value of the first free-running counter and a frequency tuning word defined by a representation of a frequency of the periodic signal.
Abstract:
The present invention provides an arbitrary waveform generator based on instruction architecture. To deal with the feature that the instructions and waveform data of the AWG are coupled in the prior art, an instruction set based waveform synthesis controller is employed, and substitutes for the sequence wave generator in the present invention, i.e. an arbitrary waveform generator based on instruction architecture. Thus the time-sharing scheduling in reading the waveform synthesis instruction and the segment waveform data is realized, and the complexity of the hardware is reduced, so that the AWG in present invention can synthesize and generate a complex sequence wave rapidly and efficiently.
Abstract:
An apparatus, a signal source, and a method for operating the same are disclosed. The apparatus includes a first signal source, a port, controller, signal synthesizer, and a first timestamp register. The port is adapted to receive a first clock signal that includes a sequence of pulses at a constant clock frequency. The signal synthesizer generates an output signal in response to inputs from the controller, the output signal having a first frequency. The first timestamp register counts pulses from the first clock signal. The controller is adapted to receive a command to change the output signal frequency from the first frequency to a second frequency, the controller causing the signal synthesizer to change the output signal frequency to the second frequency and to generate a frequency change timestamp from the timestamp register indicating a time at which the output signal changed from the first frequency to the second frequency.
Abstract:
Creating hash values based on bit values of an input vector. An apparatus includes a first and a second hash table, a first and second hash function generator adapted to configure a respective hash function for a creation of a first and second hash value based on the bit values of the input vector. The hash values are stored in the respective hash tables. An evaluation unit includes a comparison unit to compare a respective effectiveness of the first hash function and the second hash function, and an exchanging unit responsive to the comparison unit adapted to replace the first hash function by the second hash function.
Abstract:
Creating hash values based on bit values of an input vector. An apparatus includes a first and a second hash table, a first and second hash function generator adapted to configure a respective hash function for a creation of a first and second hash value based on the bit values of the input vector. The hash values are stored in the respective hash tables. An evaluation unit includes a comparison unit to compare a respective effectiveness of the first hash function and the second hash function, and an exchanging unit responsive to the comparison unit adapted to replace the first hash function by the second hash function.
Abstract:
An apparatus relating generally to accumulation is disclosed. In this apparatus, a first subtraction-bypass stage is coupled to receive an input operand and a modulus operand to provide a first difference and the input operand. An accumulation stage is coupled to the first subtraction-bypass stage to receive the first difference and the input operand. The accumulation stage is coupled to receive an offset operand for providing an offset-accumulated result. A second subtraction-bypass stage is coupled to receive the offset operand and the modulus operand to provide a second difference and the offset operand. A consolidation stage is coupled to receive the offset operand, the second difference and the offset-accumulated result to provide a consolidated accumulated result. The first subtraction-bypass stage, the accumulation stage, the second subtraction-bypass stage, and the consolidation stage are for a redundant number system.
Abstract:
One of the advantages of direct frequency synthesis technique (e.g., flying-adder architecture) is its capability of generating arbitrary frequency by utilizing the time-average-frequency concept. In the clock output of the direct frequency synthesizer, instead of one type of cycle, there are two types of cycles. Unlike the conventional one-type-cycle clock wherein clock energy is concentrated at its designed frequency, Time-Average-Frequency based clock spreads some of its energy into spurious tones, which could be harmful to certain applications. The spurious tones are caused by the periodic carry sequence generated from a fractional part accumulator inside the frequency synthesizer. The invention suggests a method and an apparatus to break this periodicity and convert the spurious tones into broadband noise.
Abstract:
A method, device and/or system for generating arbitrary waveforms of a desired shape that can be used for generating a stimulation pulse for medical purposes such as for spinal cord stimulation therapy.
Abstract:
A method, device and/or system for generating arbitrary waveforms of a desired shape that can be used for generating a stimulation pulse for medical purposes such as for spinal cord stimulation therapy.
Abstract:
A method for reducing signal edge jitter in an output signal from a numerically controlled oscillator includes processing an input signal with a first accumulator to provide a first accumulator output signal and continuing to use a carry in the processing of the input signal with the first accumulator in the event of an overflow. The method further includes processing the input signal with a second accumulator to provide a second accumulator output signal and rejecting a carry in the processing of the input signal with the second accumulator in the event of an overflow. The method further includes outputting the second accumulator output signal at an output of the numerically controlled oscillator and synchronizing the second accumulator using the first accumulator output signal.