Abstract:
An optically amplified back-up receiver includes an optical splitter for receiving a wavelength division multiplexed (WDM) optical communications signal by splitting the signal into a low power WDM optical signal onto a back-up path where it is amplified and an optical signal of desired wavelength selected. A PIN detector receives the optical signal at the desired wavelength and converts the optical signal into an electrical communications signal.
Abstract:
A multimode wavelength division multiplexing (WDM) network transceiver and method includes a plurality of optical transmitters and a multiplexer operatively connected to each optical transmitter for receiving optical communications signals and multiplexing the signals into a multimode wavelength division multiplexed optical communications signal. A demultiplexer receives a multimode wavelength division multiplexed optical communications signal and demultiplexes the signal into a plurality of demultiplexed optical communications signals that are then received and detected within a plurality of optical receivers.
Abstract:
The system and method of the present invention is operative to monitor the performance of an optical communications channel. An optical splitter splits a wavelength division multiplexed (WDM) optical communications signal into a low power WDM signal onto a back-up path, where a tunable filter sweeps the optical communications channels, while a monitoring circuit monitors the optical communications channels for performance. Optical power can be stored and subsequently displayed, providing an optical spectrum analysis of the signal.
Abstract:
A multimode wavelength division multiplexing (WDM) network transceiver and method includes a plurality of optical transmitters and a multiplexer operatively connected to each optical transmitter for receiving optical communications signals and multiplexing the signals into a multimode wavelength division multiplexed optical communications signal. A demultiplexer receives a multimode wavelength division multiplexed optical communications signal and demultiplexes the signal into a plurality of demultiplexed optical communications signals that are then received and detected within a plurality of optical receivers.
Abstract:
A multimode wavelength division multiplexing (WDM) network transceiver and method includes a plurality of optical transmitters and a multiplexer operatively connected to each optical transmitter for receiving optical communications signals and multiplexing the signals into a multimode wavelength division multiplexed optical communications signal. A demultiplexer receives a multimode wavelength division multiplexed optical communications signal and demultiplexes the signal into a plurality of demultiplexed optical communications signals that are then received and detected within a plurality of optical receivers.
Abstract:
A laser driver for an injection laser diode (ILD) has a stable power offset. The laser driver drives a laser having an optical power output that includes (a) a variable portion for providing signals and (b) a power offset that is desirably stable. The power offset may be stabilized by providing a stable input reference to the laser driver during an interval of operation when the laser is not providing signals, the input reference providing an optical power output from the laser that is approximately the same as the power offset. The laser output generated by the input reference may be compared to a predetermined reference voltage in order to provide an error correction signal, which may be a single bit. The error correction signal may be fed back to an input to the laser to correct the power offset.
Abstract:
A modular free space optical (FSO) communications device may include an adaptive optics (AO) module and an interchangeable optical relay (OR) module. More particularly, the AO module may include an AO housing and at least one AO device carried thereby. Also, the interchangeable OR module may include an OR housing and at least one OR device carried thereby. The at least one OR device of a given OR module may provide a predetermined focal length range from among different focal length ranges for respective OR modules. In addition, the OR housing and the AO housing may be interchangeably connectable and establish an optical path between the at least one OR device and the at least one AO device when connected.
Abstract:
A laser driver mechanism for image reproduction maintains linear operation over a wide frequency an dynamic range of amplitude-modulated input signals by means of a first feedback loop and a second feedback loop. The second feedback loop contains a first amplifier coupled to receive the input signals and an output coupled to a second amplifier that drives an injection laser diode. A photodetector is coupled downstream of and external to a sealed unit in which the injection laser diode emitter, an associated photodetector of the first feedback loop and beam extraction optics are housed. The photodetector of the second loop has an output coupled to the second amplifier, so that the second feedback loop serves to compensate for non-linearities in the laser driver including those of the first feedback loop. Because the second photodetector is supported externally of the sealed unit, the feedback path from the second photodetector effectively forms an outer loop feedback path relative to the first feedback path, so that the ambient operating conditions of the second photodetector are not affected by the operation of the laser. The sealed unit is mounted in a module that effectively equalizes the cross-sectional spatial distribution of optical energy within the light beam emitted by the injection laser diode and ensures that the spatial cross-section of the image spot seen by the photodetector is effectively constant regardless of laser output beam intensity. For precision scanning of the recording medium, the laser output beam is scanned by a linearly swept galvanometer.
Abstract:
A modular free, space optical (FSO) communications device may include an optical relay (OR) module and a base module. More particularly, the OR module may include an OR housing and at least one OR device carried thereby. Further, the base module may include a base housing and at least one positioner carried thereby for providing relative movement between the base module and the OR module for optical beam aiming. The modular FSO communications device may also include a camera and a remote station interface connected to the at least one positioner for permitting remote optical beam aiming. Furthermore, the remote station interface may also be connected to the camera for permitting remote viewing.
Abstract:
A laser driver for an injection laser diode (ILD) protects the ILD during ILD temperature changes so that the ILD is not subjected to a potentially harmful operating current. The ILD may be operated near it maximum limit and modulated by decreasing the available current to the ILD. The temperature of the ILD may be sensed and the maximum ILD driving current changed proportionally to a change of the sensed temperature.