摘要:
Systems and methods related to optical nanosensors comprising photoluminescent nanostructures are generally described. Generally, the nanosensors comprise a photoluminescent nanostructure and a polymer that interacts with the photoluminescent nanostructure. In some cases, the interaction between the polymer and the nanostructure can be non-covalent (e.g., via van der Waals interactions). The nanosensors comprising a polymer and a photoluminescent nanostructure may be particularly useful in determining the presence and/or concentration of relatively small molecules, in some embodiments. In addition, in some instances the nanosensors may be capable of determining relatively low concentrations of analytes, in some cases determining as little as a single molecule. In some embodiments, the interaction between the analyte and the nanosensor (e.g., between the analyte and the photoluminescent nanostructure) can be reversible, which may allow, for example, for the reuse of a nanosensor after it has been exposed to an analyte.
摘要:
A composition can include a complex, where the complex includes a photoluminescent nanostructure and a polymer free from selective binding to an analyte, the polymer adsorbed on the photoluminescent nanostructure, and a selective binding site associated with the complex.
摘要:
Systems and methods related to optical nanosensors comprising photoluminescent nanostructures are generally described. Generally, the nanosensors comprise a photoluminescent nanostructure and a polymer that interacts with the photoluminescent nanostructure. In some cases, the interaction between the polymer and the nanostructure can be non-covalent (e.g., via van der Waals interactions). The nanosensors comprising a polymer and a photoluminescent nanostructure may be particularly useful in determining the presence and/or concentration of relatively small molecules, in some embodiments. In addition, in some instances the nanosensors may be capable of determining relatively low concentrations of analytes, in some cases determining as little as a single molecule. In some embodiments, the interaction between the analyte and the nanosensor (e.g., between the analyte and the photoluminescent nanostructure) can be reversible, which may allow, for example, for the reuse of a nanosensor after it has been exposed to an analyte.
摘要:
A composition can include a complex, where the complex includes a photoluminescent nanostructure and a polymer free from selective binding to an analyte, the polymer adsorbed on the photoluminescent nanostructure, and a selective binding site associated with the complex.
摘要:
A near infrared imaging and detection system is configured to analyze shifts in photoluminescence of individual nanostructures such as single-walled carbon nanotubes or quantum dots upon binding an analyte. The system can be used to detect, localize, and quantify analytes down to the single-molecule level in a sample and within living cells and can be operated in a multiplex format. The system also can be configured to perform high-throughput chemical analysis of a large number of samples simultaneously. The invention has application in the highly sensitive diagnosis of disease, as well as the detection and quantitative analysis of drugs, molecular pathogens within a living organism, and environmental toxins.