摘要:
Systems and methods related to handling and/or isolating nanotubes and other nanostructures are generally described. In some embodiments, a polymer can be exposed to a collection of agglomerated nanostructures to produce individuated nanostructures. The polymer can comprise one or more pendant groups capable of participating in a pi-pi interaction with at least a portion of the agglomerated nanostructures to produce individuated nanostructures. Individuated nanostructures can be isolated from nanostructures that remain agglomerated. In some cases, individuated nanostructures can be freeze dried to provide, for example, a plurality of nanostructures in solid form. The systems and methods described herein may be so effective in maintaining separation between individuated nanostructures that pluralities of dried nanostructures can be re-suspended in a fluid after they are dried, in some cases with relatively low forces applied during re-suspension.
摘要:
Systems and methods related to compositions including hydrogels and photoluminescent nanostructures are described. The compositions can undergo a change in a physical, chemical, dielectric, or other property upon exposure to an altering stimulus. Changes in one or more properties of the hydrogel may impart a change in the photoluminescence of the nanostructures embedded in the hydrogel.
摘要:
A composition can include a nanostructure, and a linker associated with the nanostructure, wherein the linker is configured to interact with a capture protein. The nanostructure can include a single-walled carbon nanotube. A plurality of the compositions can be configured in an array.
摘要:
A composition for sensing an analyte can include a photoluminescent nanostructure complexed to a sensing polymer, where the sensing polymer includes an organic polymer non-covalently bound to the photoluminescent nanostructure and an analyte-binding protein covalently bound to the organic polymer, and where the analyte-binding protein is capable of selectively binding the analyte, and the analyte-binding protein undergoes a substantial conformational change when binding the analyte. Separately, a composition for sensing an analyte, can include a complex, where the complex includes a photoluminescent nanostructure in an aqueous surfactant dispersion and a boronic acid capable of selectively reacting with an analyte. The compositions can be used in devices and methods for sensing an analyte.
摘要:
A composition for sensing an analyte can include a photoluminescent nanostructure complexed to a sensing polymer, where the sensing polymer includes an organic polymer non-covalently bound to the photoluminescent nanostructure and an analyte-binding protein covalently bound to the organic polymer, and where the analyte-binding protein is capable of selectively binding the analyte, and the analyte-binding protein undergoes a substantial conformational change when binding the analyte. Separately, a composition for sensing an analyte, can include a complex, where the complex includes a photoluminescent nanostructure in an aqueous surfactant dispersion and a boronic acid capable of selectively reacting with an analyte. The compositions can be used in devices and methods for sensing an analyte.
摘要:
Systems and methods related to compositions including hydrogels and photoluminescent nanostructures are described. The compositions can undergo a change in a physical, chemical, dielectric, or other property upon exposure to an altering stimulus. Changes in one or more properties of the hydrogel may impart a change in the photoluminescence of the nanostructures embedded in the hydrogel.
摘要:
A composition can include a nanostructure, and a linker associated with the nanostructure, wherein the linker is configured to interact with a capture protein. The nanostructure can include a single-walled carbon nanotube. A plurality of the compositions can be configured in an array.