摘要:
A method of preparing (+)-calanolide A, 1, a potent HIV reverse transcriptase inhibitor, from chromene 4 is provided. According to the disclosed method, chromene 4 intermediate was subjected to a chlorotitanium-mediated aldol reaction with acetaldehyde to selectively produce (.+-.)-8a. Separation and enzyme-mediated resolution of (.+-.)-8a produced (+)-8a. Cyclization of (+)-8a under neutral Mitsunobu conditions followed by Luche reduction of (+)-7 produced (+)-calanolide A in high yield and enantiomeric purity. The method of the invention has been extended to produce potent antiviral calanolide A analogues.
摘要:
A method of preparing (+)-calanolide A, 1, a potent HIV reverse transcriptase inhibitor, from chromene 4 is provided. According to the disclosed method, chromene 4 intermediate was subjected to a chlorotitanium-mediated aldol reaction with acetaldehyde to selectively produce (.+-.)-8a. Separation and enzyme-mediated resolution of (.+-.)-8a produced (+)-8a. Cyclization of (+)-8a under neutral Mitsunobu conditions followed by Luche reduction of (+)-7 produced (+)-calanolide A in high yield and enantiomeric purity. The method of the invention has been extended to produce potent antiviral calanolide A analogues.
摘要:
A method of preparing (+)-calanolide A, 1, a potent HIV reverse transcriptase inhibitor, from chromene 4 is provided. According to the disclosed method, chromene 4 intermediate was subjected to a chlorotitanium-mediated aldol reaction with acetaldehyde to selectively produce (.+-.)-8a. Separation and enzyme-mediated resolution of (.+-.)-8a produced (+)-8a. Cyclization of (+)-8a under neutral Mitsunobu conditions followed by Luche reduction of (.+-.)-7 produced (+)-calanolide A in high yield and enantiomeric purity. The method of the invention has been extended to produce potent antiviral calanolide A analogues.
摘要:
A method of preparing (+)-calanolide A, 1, a potent HIV reverse transcriptase inhibitor, from chromene 4 is provided. According to the disclosed method, chromene 4 intermediate was subjected to a chlorotitanium-mediated aldol reaction with acetaldehyde to selectively produce (.+-.)-8a. Separation and enzyme-mediated resolution of (.+-.)-8a produced (+)-8a. Cyclization of (+)-8a under neutral Mitsunobu conditions followed by Luche reduction of (+)-7 produced (+)-calanolide A in high yield and enantiomeric purity. The method of the invention has been extended to produce potent antiviral calanolide A analogues.
摘要:
A method of preparing (+)-calanolide A, 1, a potent HIV reverse transcriptase inhibitor, from chromene 4 is provided. According to the disclosed method, chromene 4 intermediate was subjected to a chlorotitanium-mediated aldol reaction with acetaldehyde to selectively produce (.+-.)-8a. Separation and enzyme-mediated resolution of (.+-.)-8a produced (+)-8a. Cyclization of (+)-8a under neutral Mitsunobu conditions followed by Luche reduction of (+)-7 produced (+)-calanolide A in high yield and enantiomeric purity. The method of the invention has been extended to produce potent antiviral calanolide A analogues.
摘要:
A method of preparing (.+-.)-calanolide A, 1, a potent HIV reverse transcriptase inhibitor, from chromene 4 is provided. Useful intermediates for preparing (.+-.)-calanolide A and its derivatives are also provided. According to the disclosed method, chromene 4 intermediate was reacted with acetaldehyde diethyl acetal or paraldehyde in the presence of an acid catalyst with heating, or a two-step reaction including an aldol reaction with acetaldehyde and cyclization either under acidic conditions or neutral Mitsunobu conditions, to produce chromanone 7. Reduction of chromanone 7 with sodium borohydride, in the presence of cerium trichloride, produced (.+-.)-calanolide A. A method for resolving (.+-.)-calanolide A into its optically active forms by a chiral HPLC system or by enzymatic acylation and hydrolysis is also disclosed. Finally, a method for treating or preventing viral infections using (.+-.)-calanolide A or (-)-calanolide A is provided.
摘要:
A method of preparing (.+-.)-calanolide A, 1, a potent HIV reverse transcriptase inhibitor, from chromene 4 is provided. Useful intermediates for preparing (.+-.)-calanolide A and its derivatives are also provided. According to the disclosed method, chromene 4 intermediate was reacted with acetaldehyde diethyl acetal or paraldehyde in the presence of an acid catalyst with heating, or a two-step reaction including an aldol reaction with acetaldehyde and cyclization either under acidic conditions or neutral Mitsunobu conditions, to produce chromanone 7. Reduction of chromanone 7 with sodium borohydride, in the presence of cerium trichloride, produced (.+-.)-calanolide A. A method for resolving (.+-.)-calanolide A into its optically active forms by a chiral HPLC system or by enzymatic acylation and hydrolysis is also disclosed. Finally, a method for treating or preventing a viral infections using (.+-.)-calanolide or (-)-calanolide is provided.
摘要:
A method of preparing (.+-.)-calanolide A, 1, a potent HIV reverse transcriptase inhibitor, from chromene 4 is provided. Useful intermediates for preparing (.+-.)-calanolide A and its derivatives are also provided. According to the disclosed method, chromene 4 intermediate was reacted with acetaldehyde diethyl acetal or paraldehyde in the presence of an acid catalyst with heating, or a two-step reaction including an aldol reaction with acetaldehyde and cyclization either under acidic conditions or neutral Mitsunobu conditions, to produce chromanone 7. Reduction of chromanone 7 with sodium borohydride, in the presence of cerium trichloride, produced (.+-.)-calanolide A. A method for resolving (.+-.)-calanolide A into its optically active forms by a chiral HPLC system or by enzymatic acylation and hydrolysis is also disclosed. Finally, a method for treating or preventing viral infections using (.+-.)-calanolide A or (-)-calanolide A is provided.
摘要:
A method of preparing (.+-.)-calanolide A, 1, a potent HIV reverse transcriptase inhibitor, from chromene 4 is provided. Useful intermediates for preparing (+)-calanolide A and its derivatives are also provided. According to the disclosed method, chromene 4 intermediate was reacted with acetaldehyde diethyl acetal or paraldehyde in the presence of an acid catalyst with heating, or a two-step reaction including an aldol reaction with acetaldehyde and cyclization either under acidic conditions or neutral Mitsunobu conditions, to produce chromanone 7. Reduction of chromanone 7 with sodium borohydride, in the presence of cerium trichloride, produced (.+-.)-calanolide A. A method for resolving (.+-.)-calanolide A into its optically active forms by a chiral HPLC system or by enzymatic acylation and hydrolysis is also disclosed. Finally, a method for treating or preventing viral infections using (.+-.)-calanolide A or (-)-calanolide A is provided.