摘要:
Provided is a system, deployment and program for resource allocation unit queuing in which an allocation unit associated with a task is classified. An allocation unit freed as the task ends is queued for use by another task in a queue at a selected location within the queue in accordance with the classification of said allocation unit. In one embodiment, an allocation unit is queued at a first end of the queue if classified in a first class and is queued at a second end of the queue if classified in said second class. Other embodiments are described and claimed.
摘要:
Provided is a method, system, deployment and program for resource allocation unit queuing in which an allocation unit associated with a task is classified. An allocation unit freed as the task ends is queued for use by another task in a queue at a selected location within the queue in accordance with the classification of said allocation unit. In one embodiment, an allocation unit is queued at a first end of the queue if classified in a first class and is queued at a second end of the queue if classified in said second class. Other embodiments are described and claimed.
摘要:
Provided is a system, deployment and program for resource allocation unit queuing in which an allocation unit associated with a task is classified. An allocation unit freed as the task ends is queued for use by another task in a queue at a selected location within the queue in accordance with the classification of said allocation unit. In one embodiment, an allocation unit is queued at a first end of the queue if classified in a first class and is queued at a second end of the queue if classified in said second class. Other embodiments are described and claimed.
摘要:
A method to preserve a logical communication path in a data processing system, that includes a host computer, a storage controller that comprises a first logical control unit (“LCU”), and a logical communication path that is in communication with the host computer and the first LCU, comprising deleting the first LCU and setting a first status for same. The method then configures a second LCU, and establishes a second status for same, wherein the second LCU includes all or a portion of the first LCU, but is not the same as the first LCU. The deleting, setting, configuring, and establishing are performed while maintaining the logical communication path, which is in communication with the second LCU.
摘要:
A system and method for recovering from logical path failures is set forth. More specifically, when a host detects a logical path failure, the host enters a path discovery mode of operation. If the host continues to detect a logical path failure while operating in the logical path discovery mode of operation, the host removes the logical path from a logical path mask, and the host does not use the removed logical path again. Additionally, the system and method facilitates recovery of the failed logical paths by using a plurality of logical path masks. A first mask is referred to as an intermediate failure logical path mask and a second mask is referred to as a permanent failure logical path mask.
摘要:
A system and method for recovering from logical path failures is set forth. More specifically, when a host detects a logical path failure, the host enters a path discovery mode of operation. If the host continues to detect a logical path failure while operating in the logical path discovery mode of operation, the host removes the logical path from a logical path mask, and the host does not use the removed logical path again. Additionally, the system and method facilitates recovery of the failed logical paths by using a plurality of logical path masks. A first mask is referred to as an intermediate failure logical path mask and a second mask is referred to as a permanent failure logical path mask.
摘要:
A method for verifying an input/output (I/O) hardware configuration is provided. A verification command is processed. The verification command includes a software device address range associated with a logical control unit (LCU) of the I/O hardware. The LCU utilizes a first logical path. The software device address range utilizing the first logical path is compared with an existing software device address range utilizing at least one additional logical path. The verification command is accepted if the software device address range and the existing software device address range match.
摘要:
A method to minimize performance degradation during communication path failure in a data processing system, comprising a host computer, a storage controller, and a plurality of physical communication paths in communication with the host computer and the storage controller, where the method establishes a threshold communication path error rate, and determines an (i)th actual communication path error rate for an (i)th physical communication path, wherein that (i)th communication path is one of the plurality of physical communication paths. If the (i)th actual communication path error rate is greater than the threshold communication path error rate, the method discontinues use of the (i)th physical communication path.
摘要:
A method to minimize performance degradation during communication path failure in a data processing system, comprising a host computer, a storage controller, and a plurality of physical communication paths in communication with the host computer and the storage controller, where the method establishes a. threshold communication path error rate, and determines an (i)th actual communication path error rate for an (i)th physical communication path, wherein that (i)th communication path is one of the plurality of physical communication paths. If the (i)th actual communication path error rate is greater than the threshold communication path error rate, the method discontinues use of the (i)th physical communication path.
摘要:
A storage controller receives an interrupt control directive from a host. The storage controller generates a first plurality of interrupts, in response to access requests received from the host for at least one storage device coupled to the storage controller, wherein the first plurality of interrupts indicates whether access to the at least one storage device is allowed to the host. The storage controller generates a second plurality of interrupts, wherein the second plurality of interrupts comprises unsolicited interrupts for the host that are different from the first plurality of interrupts. The storage controller controls how many of the first plurality of interrupts and how many of the second plurality interrupts to send to the host, based on the received interrupt control directive.