Abstract:
A serial peripheral interface is configurable to operate in a I2S transmission mode. The interface has a transmission unit connected with external pins for data, bit clock, and left/right clock signal, a first-in-first-out (FIFO) buffer with a plurality of memory lines, and a control unit operable to read data portions from two memory lines, to assemble them into a transmission word, and to forward the assembled transmission word to the transmission unit, wherein the transmission unit is configured to serially transmit the assembled transmission word through the external data pin.
Abstract:
A serial peripheral interface is configurable to operate in a I2S transmission mode. The interface has a transmission unit connected with external pins for data, bit clock, and left/right clock signal, a first-in-first-out (FIFO) buffer with a plurality of memory lines, and a control unit operable to read data portions from two memory lines, to assemble them into a transmission word, and to forward the assembled transmission word to the transmission unit, wherein the transmission unit is configured to serially transmit the assembled transmission word through the external data pin.
Abstract:
A processor according to embodiments comprises an on-board sample rate converter for converting a source audio signal that is sampled at a first sampling rate to an output audio signal that is sampled at a second sampling rate. The sample rate converter utilizes a master clock signal in converting the audio signal. The sample rate converter selects the master clock signal from available reference clock signals, such as an on-chip system clock or a bus interface clock, and scales the frequency of the selected clock signal to generate the master clock signal with the frequency of the second sampling rate.
Abstract:
A processor according to embodiments comprises an on-board sample rate converter for converting a source audio signal that is sampled at a first sampling rate to an output audio signal that is sampled at a second sampling rate. The sample rate converter utilizes a master clock signal in converting the audio signal. The sample rate converter selects the master clock signal from available reference clock signals, such as an on-chip system clock or a bus interface clock, and scales the frequency of the selected clock signal to generate the master clock signal with the frequency of the second sampling rate.