Abstract:
Techniques for providing a direct injection semiconductor memory device are disclosed. In one exemplary embodiment, the techniques may be realized as a direct injection semiconductor memory device including a plurality of memory cells arranged in an array of rows and columns. At least one of the plurality of memory cells may include a first region coupled to a respective bit line of the array, a second region coupled to a respective source line of the array, a body region spaced apart from and capacitively coupled to a respective word line of the array, wherein the body region may be electrically floating and disposed between the first region and the second region, and a third region coupled to a respective carrier injection line of the array, wherein the respective carrier injection line may be one of a plurality of carrier injection lines in the array that are coupled to each other.
Abstract:
Techniques for forming a contact to a buried diffusion layer in a semiconductor memory device are disclosed. The techniques may be realized as a semiconductor memory device. The semiconductor memory device may comprise a substrate comprising an upper layer, an array of dummy pillars formed on the upper layer of the substrate and arranged in rows and columns, and an array of active pillars formed on the upper layer of the substrate and arranged in rows and columns. Each of the dummy pillars may extend upward from the upper layer and have a bottom contact that is electrically connected with the upper layer of the substrate. Each of the active pillars may extend upward from the upper layer and have an active first region, an active second region, and an active third region. Each of the active pillars may also be electrically connected with the upper layer of the substrate.