Abstract:
A method of preventing formation of titanium oxide within a semiconductor device structure during a high temperature treatment of the device structure includes forming a passivation layer to preclude formation of titanium oxide at a titanium/oxide interface of a semiconductor device structure. The method includes providing a substrate assembly including at least an oxide region and forming a layer of titanium over a surface of the oxide region. The oxide region surface is treated with a plasma comprising nitrogen prior to forming the titanium layer so as to form a passivation layer upon which the titanium layer is formed. A thermal treatment is performed on the substrate assembly with the passivation layer substantially inhibiting diffusion of oxygen from the oxide layer during the thermal treatment of the substrate assembly. Generally, the passivation layer comprises SixOyNz.
Abstract:
A method of preventing formation of titanium oxide within a semiconductor device structure during a high temperature treatment of the device structure includes forming a passivation layer to preclude formation of titanium oxide at a titanium/oxide interface of a semiconductor device structure. The method includes providing a substrate assembly including at least an oxide region and forming a layer of titanium over a surface of the oxide region. The oxide region surface is treated with a plasma comprising nitrogen prior to forming the titanium layer so as to form a passivation layer upon which the titanium layer is formed. A thermal treatment is performed on the substrate assembly with the passivation layer substantially inhibiting diffusion of oxygen from the oxide layer during the thermal treatment of the substrate assembly. Generally, the passivation layer comprises SixOyNz.
Abstract:
The method comprises forming a layer comprised of BPSG above a substrate and a plurality of transistors, forming a dielectric layer above the BPSG layer, the dielectric layer comprised of a material having a dielectric constant greater than approximately 6.0, forming a plurality of openings in the dielectric layer and the BPSG layer, each of the openings allowing contact to a doped region of one of the transistors, and forming a conductive local interconnect in each of the openings. In another embodiment, the method comprises forming a layer comprised of BPSG above the substrate and between the transistors, forming a local interconnect in openings formed in the BPSG layer, reducing a thickness of the BPSG layer after the local interconnects are formed, and forming a dielectric layer above the BPSG layer and between the local interconnects, wherein the dielectric layer has a dielectric constant greater than approximately 6.0.
Abstract:
The invention provides a technique to fabricate a dielectric plug in a MOSFET. The dielectric plug is fabricated by forming an oxide layer over exposed source and drain regions in the substrate including a gate electrode stack. The formed oxide layer in the source and drain regions are then substantially removed to expose the substrate in the source and drain regions and to leave a portion of the oxide layer under the gate electrode stack to form the dielectric plug and a channel region between the source and drain regions.
Abstract:
Field-effect transistors, and methods of their fabrication, having channel regions formed separately from their source/drain regions and having monocrystalline material interposed between the channel regions and the source/drain regions. The monocrystalline material includes monocrystalline silicon and silicon-germanium alloy.
Abstract:
A field-effect transistor has a channel region in a bulk semiconductor substrate, a first source/drain region on a first side of the channel region, a second source/drain region on a second side of the channel region, and an extension of epitaxial monocrystalline material formed on the bulk semiconductor substrate so as to extend away from each side of the channel region.