Abstract:
Various technologies described herein pertain to controlling geo-scale analytics with bandwidth and regulatory constraints. An analytical query (e.g., a recurrent analytical query, a non-recurrent analytical query, etc.) to be executed over distributed data in data partitions stored in a plurality of data centers can be received. Moreover, a query execution plan for the analytical query can be generated, where the query execution plan includes tasks. Further, replication strategies for the data partitions can be determined. A replication strategy for a particular data partition can specify one or more data centers to which the particular data partition is to be replicated if the particular data partition is to be replicated. The tasks of the query execution plan for the analytical query can further be scheduled to the data centers based on the replication strategies for the data partitions. The analytical query can be part of a workload of analytical queries.
Abstract:
Micro-schedulers control bandwidth allocation for clients, each client subscribing to a respective predefined portion of bandwidth of an outgoing communication link. A macro-scheduler controls the micro-schedulers, by allocating the respective subscribed portion of bandwidth associated with each respective client that is active, by a predefined first deadline, with residual bandwidth that is unused by the respective clients being shared proportionately among respective active clients by a predefined second deadline, while minimizing coordination among micro-schedulers by the macro-scheduler periodically adjusting respective bandwidth allocations to each micro-scheduler.
Abstract:
Methods, media, and systems for implementing packet routing rules are provided for herein. In some embodiments, a packet routing rule is received that is to be applied to network packets in accordance with conditions identified by the packet routing rule. The conditions including a first condition associated with a first header field and a second condition associated with a second header field. In embodiments, a first cost associated with searching a first classifier for the packet routing rule utilizing the first condition and a second cost associated with searching a second classifier for the packet routing rule utilizing the second condition can then be determined. The packet routing rule can then be stored in a selected one of the first and second classifiers, based, at least in part, on the first and second cost. Other embodiments may be described and/or claimed herein.
Abstract:
Various technologies described herein pertain to controlling geo-scale analytics with bandwidth and regulatory constraints. An analytical query (e.g., a recurrent analytical query, a non-recurrent analytical query, etc.) to be executed over distributed data in data partitions stored in a plurality of data centers can be received. Moreover, a query execution plan for the analytical query can be generated, where the query execution plan includes tasks. Further, replication strategies for the data partitions can be determined. A replication strategy for a particular data partition can specify one or more data centers to which the particular data partition is to be replicated if the particular data partition is to be replicated. The tasks of the query execution plan for the analytical query can further be scheduled to the data centers based on the replication strategies for the data partitions. The analytical query can be part of a workload of analytical queries.
Abstract:
Micro-schedulers control bandwidth allocation for clients, each client subscribing to a respective predefined portion of bandwidth of an outgoing communication link. A macro-scheduler controls the micro-schedulers, by allocating the respective subscribed portion of bandwidth associated with each respective client that is active, by a predefined first deadline, with residual bandwidth that is unused by the respective clients being shared proportionately among respective active clients by a predefined second deadline, while minimizing coordination among micro-schedulers by the macro-scheduler periodically adjusting respective bandwidth allocations to each micro-scheduler.
Abstract:
Micro-schedulers control bandwidth allocation for clients, each client subscribing to a respective predefined portion of bandwidth of an outgoing communication link. A macro-scheduler controls the micro-schedulers, by allocating the respective subscribed portion of bandwidth associated with each respective client that is active, by a predefined first deadline, with residual bandwidth that is unused by the respective clients being shared proportionately among respective active clients by a predefined second deadline, while minimizing coordination among micro-schedulers by the macro-scheduler periodically adjusting respective bandwidth allocations to each micro-scheduler.