Abstract:
Optimizing multi-class image classification by leveraging patch-based features extracted from weakly supervised images to train classifiers is described. A corpus of images associated with a set of labels may be received. One or more patches may be extracted from individual images in the corpus. Patch-based features may be extracted from the one or more patches and patch representations may be extracted from individual patches of the one or more patches. The patches may be arranged into clusters based at least in part on the patch-based features. At least some of the individual patches may be removed from individual clusters based at least in part on determined similarity values that are representative of similarity between the individual patches. The system may train classifiers based in part on patch-based features extracted from patches in the refined clusters. The classifiers may be used to accurately and efficiently classify new images.
Abstract:
Systems and methods for learning topic models from unstructured data and applying the learned topic models to recognize semantics for new data items are described herein. In at least one embodiment, a corpus of multimedia data items associated with a set of labels may be processed to generate a refined corpus of multimedia data items associated with the set of labels. Such processing may include arranging the multimedia data items in clusters based on similarities of extracted multimedia features and generating intra-cluster and inter-cluster features. The intra-cluster and the inter-cluster features may be used for removing multimedia data items from the corpus to generate the refined corpus. The refined corpus may be used for training topic models for identifying labels. The resulting models may be stored and subsequently used for identifying semantics of a multimedia data item input by a user.
Abstract:
Described is using flash memory (or other secondary storage), RAM-based data structures and mechanisms to access key-value pairs stored in the flash memory using only a low RAM space footprint. A mapping (e.g. hash) function maps key-value pairs to a slot in a RAM-based index. The slot includes a pointer that points to a bucket of records on flash memory that each had keys that mapped to the slot. The bucket of records is arranged as a linear-chained linked list, e.g., with pointers from the most-recently written record to the earliest written record. Also described are compacting non-contiguous records of a bucket onto a single flash page, and garbage collection. Still further described is load balancing to reduce variation in bucket sizes, using a bloom filter per slot to avoid unnecessary searching, and splitting a slot into sub-slots.
Abstract:
This disclosure describes techniques for training models from video data and applying the learned models to identify desirable video data. Video data may be labeled to indicate a semantic category and/or a score indicative of desirability. The video data may be processed to extract low and high level features. A classifier and a scoring model may be trained based on the extracted features. The classifier may estimate a probability that the video data belongs to at least one of the categories in a set of semantic categories. The scoring model may determine a desirability score for the video data. New video data may be processed to extract low and high level features, and feature values may be determined based on the extracted features. The learned classifier and scoring model may be applied to the feature values to determine a desirability score associated with the new video data.
Abstract:
In various embodiments, methods and systems are disclosed for a hybrid rate plus window based congestion protocol that controls the rate of packet transmission into the network and provides low queuing delay, practically zero packet loss, fair allocation of network resources amongst multiple flows, and full link utilization. In one embodiment, a congestion window may be used to control the maximum number of outstanding bits, a transmission rate may be used to control the rate of packets entering the network (packet pacing), a queuing delay based rate update may be used to control queuing delay within tolerated bounds and minimize packet loss, and aggressive ramp-up/graceful back-off may be used to fully utilize the link capacity and additive-increase, multiplicative-decrease (AIMD) rate control may be used to provide fairness amongst multiple flows.
Abstract:
Techniques for optimizing multi-class image classification by leveraging negative multimedia data items to train and update classifiers are described. The techniques describe accessing positive multimedia data items of a plurality of multimedia data items, extracting features from the positive multimedia data items, and training classifiers based at least in part on the features. The classifiers may include a plurality of model vectors each corresponding to one of the individual labels. The system may iteratively test the classifiers using positive multimedia data and negative multimedia data and may update one or more model vectors associated with the classifiers differently, depending on whether multimedia data items are positive or negative. Techniques for applying the classifiers to determine whether a new multimedia data item is associated with a topic based at least in part on comparing similarity values with corresponding statistics derived from classifier training are also described.
Abstract:
Optimizing multi-class image classification by leveraging patch-based features extracted from weakly supervised images to train classifiers is described. A corpus of images associated with a set of labels may be received. One or more patches may be extracted from individual images in the corpus. Patch-based features may be extracted from the one or more patches and patch representations may be extracted from individual patches of the one or more patches. The patches may be arranged into clusters based at least in part on the patch-based features. At least some of the individual patches may be removed from individual clusters based at least in part on determined similarity values that are representative of similarity between the individual patches. The system may train classifiers based in part on patch-based features extracted from patches in the refined clusters. The classifiers may be used to accurately and efficiently classify new images.
Abstract:
Disclosed herein are systems and methods for executing programs written in functional style. A distributed computing system receives a program that expresses computation upon one or more sets of distributed key-value pairs (DKVs) and one or more global variables (GVs). The system distributes an assembly that includes at least a compiled binary of the program to the nodes of a computing cluster, with different portions of the DKVs being stored across the plurality of nodes of the computing cluster. The system causes execution of the assembly by each of the plurality of nodes of the computing cluster, the ones of the plurality of nodes executing the assembly using the different portions of the one or more DKVs stored thereon.
Abstract:
In various embodiments, methods and systems for implementing distributed data object management are provided. The distributed data object management system includes a local metadata-consensus information store and one or more remote metadata-consensus information stores for metadata-consensus information and a local data store and one or more remote data stores for erasure coded fragments. For a write operation, corresponding metadata writes and data writes are performed in parallel using a metadata write path and a data write path, respectively, when writing to the local metadata-consensus information store and the one or more remote metadata-consensus information stores and the local data store and the one or more remote data stores. And, for a read operation, corresponding metadata reads and data reads are performed in parallel using a metadata read path and a data read path, respectively, when reading from the metadata-consensus information stores and the data stores.
Abstract:
In various embodiments, methods and systems for implementing distributed data object management are provided. The distributed data object management system includes a distributed storage system having a local metadata-consensus information store in and one or more remote metadata-consensus information stores. A metadata-consensus information store is configured to store metadata-consensus information. The metadata-consensus information corresponds to erasure coded fragments of a data object and instruct on how to manage the erasure coded fragments. The distributed storage system further includes a local data store and one or more remote data stores for the erasure coded fragments. The distributed data object management system includes a distributed data object manager for operations including, interface operations, configuration operations, write operations, read operations, delete operations, garbage collection operations and failure recovery operations. The distributed data object management system is operates based on metadata paths and data paths, operating in parallel, for write operations and read operations.