Abstract:
A data manager may include a data opaque interface configured to provide, to an arbitrarily selected page-oriented access method, interface access to page data storage that includes latch-free access to the page data storage. In another aspect, a swap operation may be initiated, of a portion of a first page in cache layer storage to a location in secondary storage, based on initiating a prepending of a partial swap delta record to a page state associated with the first page, the partial swap delta record including a main memory address indicating a storage location of a flush delta record that indicates a location in secondary storage of a missing part of the first page. In another aspect, a page manager may initiate a flush operation of a first page in cache layer storage to a location in secondary storage, based on atomic operations with flush delta records.
Abstract:
Systems and methods that allow secure application-driven arbitrary compute in storage devices in a cloud-based computing system are provided. A computing system including a compute controller configured to: (1) provide access to host compute resources, and (2) operate in at least one of a first mode or a second mode is provided. The computing system may further include a storage controller configured to provide access to storage systems including storage components, at least one compute component, and at least one cryptographic component. In the first mode, the host compute resources may be configured to execute at least a first operation on at least a first set of data stored in at least one of the storage components. In the second mode, the at least one compute component may be configured to execute at least a second operation on at least a second set of data.
Abstract:
A technique for resource allocation in a wireless network (for example, an access point type wireless network), which supports concurrent communication on a band of channels, is provided. The technique includes accepting connectivity information for the network that supports concurrent communication on the band of channels. A conflict graph is generated from the connectivity information. The generated conflict graph models concurrent communication on the band of channels. A linear programming approach, which incorporates information form the conflict graph and rate requirements for nodes of the network, can be utilized to maximize throughput of the network.
Abstract:
Described is using flash memory (or other secondary storage), RAM-based data structures and mechanisms to access key-value pairs stored in the flash memory using only a low RAM space footprint. A mapping (e.g. hash) function maps key-value pairs to a slot in a RAM-based index. The slot includes a pointer that points to a bucket of records on flash memory that each had keys that mapped to the slot. The bucket of records is arranged as a linear-chained linked list, e.g., with pointers from the most-recently written record to the earliest written record. Also described are compacting non-contiguous records of a bucket onto a single flash page, and garbage collection. Still further described is load balancing to reduce variation in bucket sizes, using a bloom filter per slot to avoid unnecessary searching, and splitting a slot into sub-slots.
Abstract:
Deduplication is integrated with software building and chunk storing. A dedup module includes dedup software, a build graph interface, and a chunk store interface. A dedup graph includes a portion of the build graph, and a portion that represents build artifact file chunks. The dedup software queries whether chunks are present in the chunk store, submits a chunk for storage when the chunk is not already present, and avoids submitting the chunk when it is present. Queries may use hash comparisons, a hash tree dedup graph, chunk expiration dates, content addressable chunk store memory, inference of a child node's presence, recursion, and a local cache of node hashes and node expiration dates, for example. A change caused by the build impacts fewer dedup graph nodes than directory graph nodes, resulting in fewer storage operations to update the chunk storage with new or changed build artifacts.
Abstract:
In various embodiments, methods and systems are disclosed for a hybrid rate plus window based congestion protocol that controls the rate of packet transmission into the network and provides low queuing delay, practically zero packet loss, fair allocation of network resources amongst multiple flows, and full link utilization. In one embodiment, a congestion window may be used to control the maximum number of outstanding bits, a transmission rate may be used to control the rate of packets entering the network (packet pacing), a queuing delay based rate update may be used to control queuing delay within tolerated bounds and minimize packet loss, and aggressive ramp-up/graceful back-off may be used to fully utilize the link capacity and additive-increase, multiplicative-decrease (AIMD) rate control may be used to provide fairness amongst multiple flows.
Abstract:
A data manager may include a data opaque interface configured to provide, to an arbitrarily selected page-oriented access method, interface access to page data storage that includes latch-free access to the page data storage. In another aspect, a swap operation may be initiated, of a portion of a first page in cache layer storage to a location in secondary storage, based on initiating a prepending of a partial swap delta record to a page state associated with the first page, the partial swap delta record including a main memory address indicating a storage location of a flush delta record that indicates a location in secondary storage of a missing part of the first page. In another aspect, a page manager may initiate a flush operation of a first page in cache layer storage to a location in secondary storage, based on atomic operations with flush delta records.
Abstract:
A data manager may include a data opaque interface configured to provide, to an arbitrarily selected page-oriented access method, interface access to page data storage that includes latch-free access to the page data storage. In another aspect, a swap operation may be initiated, of a portion of a first page in cache layer storage to a location in secondary storage, based on initiating a prepending of a partial swap delta record to a page state associated with the first page, the partial swap delta record including a main memory address indicating a storage location of a flush delta record that indicates a location in secondary storage of a missing part of the first page. In another aspect, a page manager may initiate a flush operation of a first page in cache layer storage to a location in secondary storage, based on atomic operations with flush delta records.
Abstract:
Update requests that specify updates to a logical page associated with a key-value store are obtained. Updates to the logical page are posted using the obtained plurality of update requests, without accessing the logical page via a read operation.
Abstract:
The subject disclosure is directed towards encryption and deduplication integration between computing devices and a network resource. Files are partitioned into data blocks and deduplicated via removal of duplicate data blocks. Using multiple cryptographic keys, each data block is encrypted and stored at the network resource but can only be decrypted by an authorized user, such as domain entity having an appropriate deduplication domain-based cryptographic key. Another cryptographic key referred to as a content-derived cryptographic key ensures that duplicate data blocks encrypt to substantially equivalent encrypted data.