摘要:
A method for providing BGP route updates in an MPLS network is disclosed. The route update is performed at a router having a forwarding information table containing BGP routes and an internal label, and an adjacency table containing BGP/VPN labels and said internal label. The internal label corresponds to at least one IGP route and has an adjacency associated therewith. The method includes updating the adjacency associated with the internal label following an IGP route change.
摘要:
A method for defining hardware routing paths for networks having IP and MPLS paths generally comprises assigning a path ID for each path within a path group. The path ID for each path is an IP address and the path group contains all IP paths, all MPLS paths, or both IP and MPLS paths. The path ID for each MPLS path is a unique IP multicast address. The method further includes comparing all path IDs in each path group and assigning a common hardware resource to groups having matching path IDs.
摘要:
A method for providing BGP route updates in an MPLS network is disclosed. The route update is performed at a router having a forwarding information table containing BGP routes and an internal label, and an adjacency table containing BGP/VPN labels and said internal label. The internal label corresponds to at least one IGP route and has an adjacency associated therewith. The method includes updating the adjacency associated with the internal label following an IGP route change.
摘要:
In a wireless frequency hopping communication system, a protocol, which does not employ carrier sense or collision detect, is provided for allocating bandwidth fairly and efficiently under varying load conditions, wherein a node is permitted random access to the medium bandwidth under light loading conditions and wherein under higher loading conditions a time/bandwidth allocation is made with a portion of the allocation dedicated to inband backhaul tasks by introducing a form of polling, the size of the reserved time/bandwidth allocation being selected based on traffic pattern. Under such heavy load conditions, non-slave traffic is allocated bandwidth in slots as pseudo-slave packets to guarantee a share of the bandwidth. Depending on the activity of the population of packets, including responsiveness and trend of responsiveness, the relative size of the slots is determined. Random access is always permitted for certain classes of packets, namely handshake packets, which are used to establish the master/slave relationships between nodes, no matter how a node is loaded. Once a master/slave relationship is established, a slave is only allowed to use the random access method to inform its master that it has data pending for transmission to the network when the node has a light load. Polling is always employed when the node at least has one active slave. According to one aspect of the invention, the size of the reserved allocation is based on a variable heartbeat of a multicast poll. Further in accordance with the invention, a handshaking between master and slave permits transition between operation in a random access mode and a polled mode.