摘要:
There is provided an image processing apparatus that can implement image recognition processing on all of objects to be recognized, and can reduce a load of capturing and transferring images. The image processing apparatus includes: an image capturing unit that captures image information picked up by an imaging element; a processing region setting unit that sets a plurality of processing regions for the image information; a processing sequence/frequency determination unit that determines at least any one of a sequence, a frequency, and a timing of capturing the respective image information in a plurality of set processing regions, and at least any one of a sequence, a frequency, and a timing of processing the respective image information; and an image processing unit that captures the image information for each of the processing regions according to the sequence, the frequency, or the timing which has been determined, and processes the captured image information according to the sequence, the frequency, or the timing which has been determined.
摘要:
There is provided an image processing apparatus that can implement image recognition processing on all of objects to be recognized, and can reduce a load of capturing and transferring images. The image processing apparatus includes: an image capturing unit that captures image information picked up by an imaging element; a processing region setting unit that sets a plurality of processing regions for the image information; a processing sequence/frequency determination unit that determines at least any one of a sequence, a frequency, and a timing of capturing the respective image information in a plurality of set processing regions, and at least any one of a sequence, a frequency, and a timing of processing the respective image information; and an image processing unit that captures the image information for each of the processing regions according to the sequence, the frequency, or the timing which has been determined, and processes the captured image information according to the sequence, the frequency, or the timing which has been determined.
摘要:
An in-vehicle running-environment recognition apparatus including an input unit for inputting an image signal from in-vehicle imaging devices for photographing external environment of a vehicle, an image processing unit for detecting a first image area by processing the image signal, the first image area having a factor which prevents recognition of the external environment, an image determination unit for determining a second image area based on at least any one of size of the first image area, position thereof, and set-up positions of the in-vehicle imaging devices having the first image area, an environment recognition processing being performed in the second image area, the first image area being detected by the image processing unit, and an environment recognition unit for recognizing the external environment of the vehicle based on the second image area.
摘要:
Disclosed is a road-shoulder detecting device including a distance-information calculating portion for calculating the presence of a physical object and the distance from the subject vehicle to the object from input three-dimensional image information relating to an environment around the vehicle, a vehicular road surface detecting portion for detecting a vehicular road surface with the subject vehicle from a distance image, a height difference calculating portion for measuring height difference between the detected vehicular road and an off-road region, and a road shoulder decision portion for deciding height difference as to whether the road shoulder is boundary between the surface and the region in a case where there is an off-road region lower than the vehicular road surface.
摘要:
It is possible to provide an image processing apparatus capable of carrying out calibration easily and precisely without requiring a special facility and provide an imaging apparatus making use of the image processing apparatus. The imaging apparatus comprises at least two cameras 4a and 4b. The image processing apparatus or the image processing apparatus comprises a corresponding-area computing section 23 for finding a relation between areas on images taken by the cameras 4a and 4b; a coincidence-degree computing section 24 for finding a degree of coincidence of information obtained from corresponding areas on the images taken by the cameras 4a and 4b; and a camera-parameter computing section 25 for finding camera parameters on the basis of the coincidence degree computed by the coincidence-degree computing section 24.
摘要:
An in-vehicle running-environment recognition apparatus including an input unit for inputting an image signal from in-vehicle imaging devices for photographing external environment of a vehicle, an image processing unit for detecting a first image area by processing the image signal, the first image area having a factor which prevents recognition of the external environment, an image determination unit for determining a second image area based on at least any one of size of the first image area, position thereof, and set-up positions of the in-vehicle imaging devices having the first image area, an environment recognition processing being performed in the second image area, the first image area being detected by the image processing unit, and an environment recognition unit for recognizing the external environment of the vehicle based on the second image area.
摘要:
In conventional systems using an onboard camera disposed rearward of a vehicle for recognizing an object surrounding the vehicle, the object is recognized by the camera disposed rearward of the vehicle. In the image recognized by the camera, a road surface marking taken by the camera appears at a lower end of a screen of the image, which makes it difficult to predict a specific position in the screen from which the road surface marking appears. Further, an angle of depression of the camera is large, and it is a short period of time to acquire the object. Therefore, it is difficult to improve a recognition rate and to reduce false recognition. Results of recognition (type, position, angle, recognition time) made by a camera disposed forward of the vehicle, are used to predict a specific timing and a specific position of a field of view of a camera disposed rearward of the vehicle, at which the object appears. Parameters of recognition logic of the rearwardly disposed camera and processing timing are then optimally adjusted. Further, luminance information of the image from the forwardly disposed camera is used to predict possible changes to be made in luminance of the field of view of the rearwardly disposed camera. Gain and exposure time of the rearwardly disposed camera are then adjusted.
摘要:
In conventional systems using an onboard camera disposed rearward of a vehicle for recognizing an object surrounding the vehicle, the object is recognized by the camera disposed rearward of the vehicle. In the image recognized by the camera, a road surface marking taken by the camera appears at a lower end of a screen of the image, which makes it difficult to predict a specific position in the screen from which the road surface marking appears. Further, an angle of depression of the camera is large, and it is a short period of time to acquire the object. Therefore, it is difficult to improve a recognition rate and to reduce false recognition. Results of recognition (type, position, angle, recognition time) made by a camera disposed forward of the vehicle, are used to predict a specific timing and a specific position of a field of view of a camera disposed rearward of the vehicle, at which the object appears. Parameters of recognition logic of the rearwardly disposed camera and processing timing are then optimally adjusted. Further, luminance information of the image from the forwardly disposed camera is used to predict possible changes to be made in luminance of the field of view of the rearwardly disposed camera. Gain and exposure time of the rearwardly disposed camera are then adjusted.
摘要:
A road shape recognition device capable of accurately recognizing the road shape of a road that lies ahead in the travel direction of a vehicle is provided. A road shape recognition device 1 detects a road region of the road based on an image capturing a scene ahead in the travel direction of the vehicle, and estimates the shape of the road based on that road region. Thus, it is possible to accurately recognize road shapes over distances ranging from short to long.
摘要:
A stereo camera apparatus which carries out distance measuring stably and with high accuracy by making measuring distance resolution variable according to a distance to an object is provided. A stereo camera apparatus 1 takes in two images, changes resolution of a partial area of each image that is taken in, and calculates a distance from a vehicle to an object that is imaged in the partial area, based on disparity of the partial area of each image in which resolution is changed. Thus, even when the object exists at a long distance and is small in size, distance measuring processing can be carried out stably.