Abstract:
Provided are carbon fiber bundles which have high knot strength even if the single fiber fineness is large, and which have excellent handling properties and processability. The carbon fiber bundles have a single fiber fineness of 0.8-2.5 dtex, knot strength of 298 N/mm2 or greater. This method of producing carbon fibers having knot strength of 298 N/mm2 or greater involves a heat treatment step for heat treating, for 50-150 minutes, specific polyacrylonitrile-based precursor fiber bundles described in the description in an oxidizing atmosphere rising in temperature in the temperature range of 220-300° C.
Abstract translation:提供即使单纤维细度大,结节强度高,具有优异的处理性和加工性的碳纤维束。 碳纤维束的单纤维纤度为0.8-2.5分特,结强度为298N / mm 2以上。 这种生产结节强度为298N / mm 2以上的碳纤维的方法涉及热处理步骤,在50-150分钟内,在氧化气氛中升温的温度下,在描述中描述的特定聚丙烯腈基前体纤维束进行热处理 温度范围220-300℃
Abstract:
Provided are carbon fibers which have a thicker single fiber fineness of the polyacrylonitrile-based precursor fiber bundles and lower production costs, and which have excellent mechanical properties. Also provided are: carbon fiber bundles having a single fiber fineness of 0.8-2.1 dtex, a strand strength of 4.9 GPa or greater, and a strand elastic modulus of 200 GPa or greater; carbon fiber bundles having a single fiber fineness of 0.8-2.5 dtex, a strand strength of 3.0 GPa or greater, and a strand elastic modulus of 240 GPa or greater; and an optimal method for producing said carbon fiber bundles. carbon fiber bundles having a single fiber fineness of 0.8-2.5 dtex, a strand strength of 3.0 GPa or greater, and a strand elastic modulus of 240 GPa or greater; and an optimal method for producing said carbon fiber bundles.
Abstract:
Provided are carbon fibers which have a thicker single fiber fineness of the polyacrylonitrile-based precursor fiber bundles and lower production costs, and which have excellent mechanical properties. Also provided are: carbon fiber bundles having a single fiber fineness of 0.8-2.1 dtex, a strand strength of 4.9 GPa or greater, and a strand elastic modulus of 200 GPa or greater; carbon fiber bundles having a single fiber fineness of 0.8-2.5 dtex, a strand strength of 3.0 GPa or greater, and a strand elastic modulus of 240 GPa or greater; and an optimal method for producing said carbon fiber bundles. carbon fiber bundles having a single fiber fineness of 0.8-2.5 dtex, a strand strength of 3.0 GPa or greater, and a strand elastic modulus of 240 GPa or greater; and an optimal method for producing said carbon fiber bundles.