摘要:
Wafer contamination is prevented, while preventing damage to a high-frequency electrode and a susceptor. A main body 41 of the susceptor 40 of an MMT apparatus is composed of a heater arranging plate 42, an electrode arranging plate 48, and a supporting plate 56 all made from quartz. A circular electrode arranging hole 49 with a fixed depth is concentrically formed on the upper surface of the electrode arranging plate 48, and quadrangular pillars 50 are formed protruding in a matrix on the bottom of the electrode arranging hole 49. Multiple insertion holes 52 are formed in a disk-shaped high-frequency electrode 51, and the high-frequency electrode 51 is installed in the electrode arranging hole 49 by inserting each pillar 50 into each insertion hole 52. The gaps Sa and Sb are provided between the high-frequency electrode 51 and the electrode arranging plate 48. The pillar 50 boosts the strength of the electrode arranging plate 48. Damage to the high-frequency electrode is prevented even if the thermal expansion coefficient of the high-frequency electrode is larger than that of the electrode arranging plate, since the gaps absorb the thermal expansion differential.
摘要:
A tubular electrode (215) and a tubular magnet (216) are installed on an external section of a processing furnace (202) for an MMT device. A susceptor (217) for holding a wafer (200) is installed inside a processing chamber (201) of the processing furnace. A gate valve (244) for conveying the wafer into and out of the processing chamber; and a shower head (236) for spraying processing gas in a shower onto the wafer, are installed inside the processing furnace. A high frequency electrode (2) and a heater (3) are installed inside the susceptor (217) with a clearance between them and the walls forming the space. The clearances formed between the walls forming the space in the susceptor and the high frequency electrode and the heater prevent damage to the high frequency electrode and the heater even if a thermal expansion differential occurs between the high frequency electrode, the heater and the susceptor.
摘要:
A tubular electrode (215) and a tubular magnet (216) are installed on an external section of a processing furnace (202) for an MMT device. A susceptor (217) for holding a wafer (200) is installed inside a processing chamber (201) of the processing furnace. A gate valve (244) for conveying the wafer into and out of the processing chamber; and a shower head (236) for spraying processing gas in a shower onto the wafer, are installed inside the processing furnace. A high frequency electrode (2) and a heater (3) are installed inside the susceptor (217) with a clearance between them and the walls forming the space. The clearances formed between the walls forming the space in the susceptor and the high frequency electrode and the heater prevent damage to the high frequency electrode and the heater even if a thermal expansion differential occurs between the high frequency electrode, the heater and the susceptor.
摘要:
A tubular electrode (215) and a tubular magnet (216) are installed on an external section of a processing furnace (202) for an MMT device. A susceptor (217) for holding a wafer (200) is installed inside a processing chamber (201) of the processing furnace. A gate valve (244) for conveying the wafer into and out of the processing chamber; and a shower head (236) for spraying processing gas in a shower onto the wafer, are installed inside the processing furnace. A high frequency electrode (2) and a heater (3) are installed inside the susceptor (217) with a clearance between them and the walls forming the space. The clearances formed between the walls forming the space in the susceptor and the high frequency electrode and the heater prevent damage to the high frequency electrode and the heater even if a thermal expansion differential occurs between the high frequency electrode, the heater and the susceptor.
摘要:
Wafer contamination is prevented, while preventing damage to a high-frequency electrode and a susceptor. A main body 41 of the susceptor 40 of an MMT apparatus is composed of a heater arranging plate 42, an electrode arranging plate 48, and a supporting plate 56 all made from quartz. A circular electrode arranging hole 49 with a fixed depth is concentrically formed on the upper surface of the electrode arranging plate 48, and quadrangular pillars 50 are formed protruding in a matrix on the bottom of the electrode arranging hole 49. Multiple insertion holes 52 are formed in a disk-shaped high-frequency electrode 51, and the high-frequency electrode 51 is installed in the electrode arranging hole 49 by inserting each pillar 50 into each insertion hole 52. The gaps Sa and Sb are provided between the high-frequency electrode 51 and the electrode arranging plate 48. The pillar 50 boosts the strength of the electrode arranging plate 48. Damage to the high-frequency electrode is prevented even if the thermal expansion coefficient of the high-frequency electrode is larger than that of the electrode arranging plate, since the gaps absorb the thermal expansion differential.
摘要:
A tubular electrode (215) and a tubular magnet (216) are installed on an external section of a processing furnace (202) for an MMT device. A susceptor (217) for holding a wafer (200) is installed inside a processing chamber (201) of the processing furnace. A gate valve (244) for conveying the wafer into and out of the processing chamber; and a shower head (236) for spraying processing gas in a shower onto the wafer, are installed inside the processing furnace. A high frequency electrode (2) and a heater (3) are installed inside the susceptor (217) with a clearance between them and the walls forming the space. The clearances formed between the walls forming the space in the susceptor and the high frequency electrode and the heater prevent damage to the high frequency electrode and the heater even if a thermal expansion differential occurs between the high frequency electrode, the heater and the susceptor.
摘要:
Provided is a substrate processing apparatus including a partitioned susceptor and configured to heat a substrate uniformly for improving process quality and yield. The substrate stage comprises a plurality of susceptor segments embedded with heating units, a substrate stage unit comprising the plurality of susceptor segments arranged in a flat configuration to define a substrate placement surface, and a uniform heating part mounted at the substrate placement surface.