摘要:
The present invention discloses a method for making low-topography buried capacitor including the steps of first depositing oxide layers, and then forming a small pre-contact hole by a dry etch method and a large contact hole by a wet etch method while using silicon nitride caps and sidewall spacers previously deposited on the word lines and on the bit lines as etch stop layers. A buried capacitor that has significantly improved topography can be fabricated in a semiconductor device.
摘要:
The present invention provides a method of manufacturing a cylindrical capacitor which begins by forming an insulating layer and a passivation layer composed of silicon nitride is over a substrate. A plug contact opening is formed through the passivation layer and the insulating layer. The insulating layer in the plug contact opening is selectively wet etched. The wet etching forms an overhanging portion of the passivation layer. A bottom plug is formed in the contact opening. A first dielectric layer having a cylindrical electrode opening is formed over passivation layer and the plug is exposed. A second polysilicon layer is formed over the first dielectric layer and in the cylindrical openings. A second dielectric layer is formed over the second polysilicon layer and in the cylindrical electrode opening. The second dielectric layer and the second polysilicon layer are planarized. The remaining second polysilicon layer in the cylindrical opening forms a cylindrical capacitor electrode over the bottom electrode plug. The first dielectric layer and the second dielectric layer are etched away. The overhang portion 21 of the passivation layer 20 and the bottom polysilicon plug 32 prevent the etch from etching voids in the underlying insulating layer 14 when the cylindrical electrode 50 is misaligned relative to the plug.
摘要:
A method of manufacturing a memory device having embedded logic. The memory and logic FETS have two different two gate oxide 20 34 thicknesses. The method integrates (1) a salicide contact process 72 74 (logic devices) and dual gate (N+/P+) logic gate 24A 24B technology with (2) memory device Polycide with Self aligned Contact 80 Technology. The method comprises:(a) forming a first gate oxide layer 20, a first polysilicon layer 24, and a first gate cap layer 28 over said logic area 12;(b) forming memory gate structures 34 36 38 40 42A in memory area 14,(c) forming memory LDD regions 50 adjacent to said memory gate structures 24 26 28 40 in said memory area 14;(d) patterning said first gate oxide layer 20, said first polysilicon layer 24 and said first gate cap layer 28 over said logic area forming logic gate structures 20 24A & 20 24B;(e) forming spacers 66;(f) forming logic Source/drain regions 62;(g) using a salicide process to form self-aligned silicide logic S/D contacts 72 to said Source/drain regions 62, and to form self-aligned silicide logic gate contacts 74 to said logic gate structures 20 24B & 20 24A; and(h) forming self aligned polycide contacts 80 to said memory source/drain regions 50.
摘要:
A process for forming logic devices with salicide shapes on gate structures, as well as on heavily doped source/drain regions, while simultaneously forming embedded DRAM devices with salicide shapes only on gate structures, has been developed. The process features silicon oxide blocking shapes, formed in the spaces between gate structures, in the embedded DRAM device region. The silicon oxide blocking shapes are formed using a high density plasma deposition procedure which deposits a thick silicon oxide layer in the narrow spaces between gate structures in the embedded DRAM device region, and a thin silicon oxide layer in the wider spaces between gate structures in the logic device region, and on the top surface of all gate structures. A blanket, dry etch procedure is then employed to remove the thin silicon oxide layers from the top surface of all gate structures, as well as from the spaces between gate structures in the logic device region, while forming the desired silicon oxide blocking shapes between gate structures in the embedded DRAM device region, therefore allowing subsequent salicide shapes to be formed only on the top surface of gate structures, and on heavily doped source/drain regions in the logic device region.
摘要:
An improved thin film inductor design is described. A spiral geometry is used to which has been added a core of high permeability material located at the center of the spiral. If the high permeability material is a conductor, care must be taken to avoid any contact between the core and the spiral. If a dielectric ferromagnetic material is used, this constraint is removed from the design. Several other embodiments are shown in which, in addition to the high permeability core, provide low reluctance paths for the structure. In one case this takes the form of a frame of ferromagnetic material surrounding the spiral while in a second case it has the form of a hollow square located directly above the spiral.
摘要:
An improved thin film inductor design is described. A spiral geometry is used to which has been added a core of high permeability material located at the center of the spiral. If the high permeability material is a conductor, care must be taken to avoid any contact between the core and the spiral. If a dielectric ferromagnetic material is used, this constraint is removed from the design. Several other embodiments are shown in which, in addition to the high permeability core, provide low reluctance paths for the structure. In one case this takes the form of a frame of ferromagnetic material surrounding the spiral while in a second case it has the form of a hollow square located directly above the spiral.
摘要:
The present invention provides a method of manufacturing a stacked cylindrical capacitor having a smooth top cylindrical surface and uniform height. A first insulating layer 20 is formed over the substrate 10. A barrier layer 22 having an opening 23 is formed over a first insulating layer 20 on a substrate. A second insulating layer 24 composed of silicon oxide is formed on the barrier layer 22. The second insulating layer 24 and the first insulating layer 20 are patterned forming a first cylindrical opening 26 exposing the active region of the substrate 10 and forming a second cylindrical opening 30 in the second insulating layer 24 that exposes portions of the barrier layer 22. A conformal polysilicon layer 34 is formed over the resultant surface and the walls of the cylindrical openings 26 30. A planarizing layer 36 is formed over the resulting surface and then etched back forming a planarizing plug 36A that partially fills the second cylindrical opening 30A. A third insulation layer 40 is formed over resultant surface. The third insulating layer 40 and the polysilicon layer 34 are isotropically etched back forming a cylindrical bottom electrode 44 with a smooth top surface 44A. The smooth top electrode surface 44A increases the breakdown voltage to the capacitor.
摘要:
An improved thin film inductor design is described. A spiral geometry is used to which has been added a core of high permeability material located at the center of the spiral. If the high permeability material is a conductor, care must be taken to avoid any contact between the core and the spiral. If a dielectric ferromagnetic material is used, this constraint is removed from the design. Several other embodiments are shown in which, in addition to the high permeability core, provide low reluctance paths for the structure. In one case this takes the form of a frame of ferromagnetic material surrounding the spiral while in a second case it has the form of a hollow square located directly above the spiral.
摘要:
The invention provides a method for fabricating a shallow trench isolation which is not susceptable to buried contact trench formation. The invention also provides immunity from the STI “kink effect,” as well as benefits associated with nitridation. The process begins by forming a pad oxide layer on a semiconductor substrate. A nitride layer is formed on the pad oxide layer. The nitride layer, the pad oxide layer, and the semiconductor substrate are patterned to form trenches. Next, a fill oxide layer is formed over the nitride layer, the pad oxide layer, and the semiconductor substrate. The fill oxide layer is chemical-mechanical polished, stopping on the nitride layer to form fill oxide regions. N2 ions are implanted into the fill oxide regions. An anneal is performed to form a buried oxynitride layer. The buried oxynitride layer is partially above the level of the top surface of the semiconductor substrate and partially below the level of the top surface of the semiconductor substrate. The nitride layer is removed. Then, the pad oxide layer and portions of the fill oxide regions are removed using the buried oxynitride layer as an etch stop, forming shallow trench isolations.
摘要:
This invention provides a method for forming a self aligned contact without key holes using a two step sidewall spacer deposition. The process begins by providing a semiconductor structure having a device layer, a first inter poly oxide layer (IPO-1), and a conductive structure (such as a bit line) thereover, and having a contact area on the device layer adjacent to the conductive structure. The semiconductor structure can further include an optional etch stop layer overlying the first inter poly oxide layer. The conductive structure comprises at least one conductive layer with a hard mask thereover. A first spacer layer is formed over the hard mask and the IPO-1 layer and anisotropically etched to form first sidewall spacers on the sidewalls of the conductive structure up to a level above the bottom of the hard mask and below the level of the top of the hard mask such that the profile of the first sidewall spacers are not concave at any point. A second spacer layer is formed over the first sidewall spacers and anisotropically etched to form second sidewall spacers, having a profile that is not concave at any point. A second inter poly oxide layer is formed over the second sidewall spacers, the hard mask, and the IPO-1 layer, whereby the second inter poly oxide layer is free from key holes. A contact opening is formed in the second inter poly oxide layer and the first inter poly oxide layer over the contact area. A contact plug is formed in the contact openings.