Abstract:
The present invention is in the field of plant breeding and genetics, particularly as it pertains to the genus, Glycine. More specifically, the invention relates to a method for screening soybean plants containing one or more quantitative trait loci for disease resistance, species of Glycine having such loci and methods for breeding for and screening of Glycine with such loci. The invention further relates to the use of exotic germplasm in a breeding program.
Abstract:
The present invention is in the field of plant breeding and genetics, particularly as it pertains to the genus, Glycine. More specifically, the invention relates to a method for screening soybean plants containing one or more quantitative trait loci for disease resistance, species of Glycine having such loci and methods for breeding for and screening of Glycine with such loci. The invention further relates to the use of exotic germplasm in a breeding program.
Abstract:
The present invention is in the field of plant breeding and genetics, particularly as it pertains to the genus, Glycine. More specifically, the invention relates to a method for screening soybean plants containing one or more quantitative trait loci for disease resistance, species of Glycine having such loci and methods for breeding for and screening of Glycine with such loci. The invention further relates to the use of exotic germplasm in a breeding program.
Abstract:
The present invention is in the field of plant breeding and genetics, particularly as it pertains to the genus, Glycine. More specifically, the invention relates to a method for screening soybean plants containing one or more quantitative trait loci for disease resistance, species of Glycine having such loci and methods for breeding for and screening of Glycine with such loci. The invention further relates to the use of exotic germplasm in a breeding program.
Abstract:
The present invention is in the field of plant breeding and genetics, particularly as it pertains to the genus, Glycine. More specifically, the invention relates to a method for screening soybean plants containing one or more quantitative trait loci for disease resistance, species of Glycine having such loci and methods for breeding for and screening of Glycine with such loci. The invention further relates to the use of exotic germplasm in a breeding program.
Abstract:
The present invention is in the field of plant breeding and genetics, particularly as it pertains to the genus, Glycine. More specifically, the invention relates to a method for screening soybean plants containing one or more quantitative trait loci for disease resistance, species of Glycine having such loci and methods for breeding for and screening of Glycine with such loci. The invention further relates to the use of exotic germplasm in a breeding program.
Abstract:
The invention provides compositions comprising polynucleotide molecules encoding certain pesticidal polypeptides which exhibit plant parasitic nematode and/or insect control properties, and are particularly directed to controlling plant parasitic pest species of nematodes and insects known to infest crop plant species. Methods for controlling pests are disclosed in which the toxic proteins are provided in the diet of the targeted plant pests. The invention also provides compositions such as nucleic acids, proteins, and plant and bacterial cells, plants, and seeds containing the nucleic acid and protein compositions, as well as methods and kits for identifying, detecting, and isolating the compositions of the present invention. The invention further provides a method of producing crops from recombinant seeds which contain the polynucleotide molecules encoding the pesticidal polypeptides of the present invention.
Abstract:
The present invention relates to the isolation and characterization of nucleotide sequences encoding novel insecticidal proteins secreted into the extracellular space from Bacillus thuringiensis and related strains. The proteins are isolated from culture supernatants of Bacillus thuringiensis and related strains and display insecticidal activity against lepidopteran insects including European corn borer (ECB), tobacco budworm (TBW) and diamondback moth (DBM). Insecticidal proteins encoded by nucleotide sequences that hybridize under stringent conditions to the isolated and characterized nucleotide sequences are disclosed. Methods are disclosed for making and using transgenic cells and plants comprising the novel nucleotide sequence of the invention.