摘要:
A lens and aperture device for determining 3D information. An SLR camera has a lens and aperture that allows the SLR camera to determine defocused information.
摘要:
A lens and aperture device for determining 3D information. An SLR camera has a lens and aperture that allows the SLR camera to determine defocused information.
摘要:
A lens and aperture device for determining 3D information. An SLR camera has a lens and aperture that allows the SLR camera to determine defocused information.
摘要:
A method and device for high-resolution three-dimensional (3-D) imaging which obtains camera pose using defocusing is disclosed. The device comprises a lens obstructed by a mask having two sets of apertures. The first set of apertures produces a plurality of defocused images of the object, which are used to obtain camera pose. The second set of optical filters produces a plurality of defocused images of a projected pattern of markers on the object. The images produced by the second set of apertures are differentiable from the images used to determine pose, and are used to construct a detailed 3-D image of the object. Using the known change in camera pose between captured images, the 3-D images produced can be overlaid to produce a high-resolution 3-D image of the object.
摘要:
A method and device for high-resolution three-dimensional (3-D) imaging which obtains camera pose using defocusing is disclosed. The device comprises a lens obstructed by a mask having two sets of apertures. The first set of apertures produces a plurality of defocused images of the object, which are used to obtain camera pose. The second set of optical filters produces a plurality of defocused images of a projected pattern of markers on the object. The images produced by the second set of apertures are differentiable from the images used to determine pose, and are used to construct a detailed 3-D image of the object. Using the known change in camera pose between captured images, the 3-D images produced can be overlaid to produce a high-resolution 3-D image of the object.
摘要:
A camera has a lens and aperture device for determining 3D information. A projector projects an optical pattern toward a surface. The camera has at least two off-axis apertures thereon, arranged to obtain an image of the projected pattern including defocused information. The camera is movable between different positions to image the surface from said different positions, and the projector is at a specified angle of at least 5° relative to said camera. A processor carries out a first operation using information received through the apertures to determine a pose of said camera, and to determine three dimensional information about the object based on a degree of deformation of said optical pattern on said surface indicative of a three dimensional surface. An embodiment projects a grid of laser dots and uses laser-dot defocusing for approximate Z and thus grid correspondence, which can greatly increase the working depth of the system.
摘要:
Hardware and software configurations, optionally, for performing profilometry of an object are disclosed. An advantageous imaging device is described. An advantageous approach to determining imager position is also described. Each aspect described may be used independently of the other. Moreover, the teaching may find use in other fields including velocimetry, etc.
摘要:
Hardware and software configurations, optionally, for performing profilometry of an object are disclosed. An advantageous imaging device is described. An advantageous approach to determining imager position is also described. Each aspect described may be used independently of the other. Moreover, the teaching may find use in other fields including velocimetry, etc.
摘要:
A lens and aperture device for determining 3D information. A projector projects an optical pattern toward a surface. The camera has at least two off-axis apertures thereon, arranged to obtain an image of the projected pattern including defocused information. The camera is movable between different positions to image the surface from said different positions, and the projector is at a specified angle of at least 5° relative to said camera. A processor carries out a first operation using information received through the apertures to determine a pose of said camera, and to determine three dimensional information about the object based on a degree of deformation of said optical pattern on said surface indicative of a three dimensional surface. An embodiment projects a grid of laser dots and uses laser-dot defocusing for approximate Z and thus grid correspondence, which can greatly increase the working depth of the system.