Abstract:
A component includes a housing (110, 1110) at least partially defining a cavity (125, 1125), a sensor element (105) located in the cavity, and a support member (340, 1140) located over the cavity, located over at least a portion of the housing, and having a hole (341, 1141) over the cavity. The component also includes a filter (345, 700, 800, 1045) located over the support member and located over the hole in the support member.
Abstract:
A method for creating a MEMS structure is provided. In accordance with the method, a substrate (53) is provided having a sacrificial layer (55) disposed thereon and having a layer of silicon (57) disposed over the sacrificial layer. A first trench (59) is created which extends through the silica layer and the sacrificial layer and which separates the sacrificial layer into a first region (61) enclosed by the first trench and a second region (63) exterior to the first trench. A first material (65) is deposited into the first trench such that the first material fills the first trench to a depth at least equal to the thickness of the sacrificial layer. A second trench (71) is created exterior to the first trench which extends through at least the silicon layer and exposes at least a portion of the second region of the sacrificial layer. The second region of the sacrificial layer is contacted, by way of the second trench, with a chemical etching solution adapted to etch the sacrificial layer, said etching solution being selective to the first material.
Abstract:
A structure that reduces signal cross-talk through the semiconductor substrate for System-On-Chip (SOC) (2) applications, thereby facilitating the integration of digital circuit blocks (6) and analog circuit blocks (8) onto a single IC. Cross-circuit interaction through a substrate (4) is reduced by strategically positioning the various digital circuit blocks (6) and analog circuit blocks (8) in an isolated wells (10), (12), (16) and (20) over a resistive substrate (4). These well structures (10), (12), (16), and (20) are then surrounded with a patterned low resistivity layer (22) and optional trench region (24). The patterned low resistivity region (22) is formed below wells (10) and (12) and functions as a low resistance AC ground plane. This low resistivity region (22) collects noise signals that propagate between digital circuit blocks (6) and analog circuit blocks (8).