Abstract:
A metal magnetic particle provided with an oxide layer on a surface of an alloy particle containing Fe and Si, wherein the oxide layer has a first oxide layer, a second oxide layer, and a third oxide layer from the alloy particle side. Also, in line analysis of element content by using a scanning transmission electron microscope-energy dispersive X-ray spectroscopy, the first oxide layer is a layer where Si content takes a local maximum value, the second oxide layer is a layer where Fe content takes a local maximum value, and the third oxide layer is a layer where Si content takes a local maximum value.
Abstract:
A metal magnetic particle provided with an oxide layer on a surface of an alloy particle containing Fe and Si. The oxide layer has a first oxide layer, a second oxide layer, and a third oxide layer from a side of the alloy particle. All of the first oxide layer, the second oxide layer, and the third oxide layer contain Si. Also, in line analysis of element content by using a scanning transmission electron microscope-energy dispersive X-ray spectroscopy, the first oxide layer is a layer having Fe content smaller than Si content in the alloy particle, the second oxide layer is a layer having Fe content larger than the Si content in the alloy particle, and the third oxide layer is a layer having Fe content smaller than the Si content in the alloy particle.
Abstract:
A metal magnetic particle provided with an oxide layer on a surface of an alloy particle containing Fe and Si. The oxide layer has a first oxide layer, a second oxide layer, and a third oxide layer from a side of the alloy particle. All of the first oxide layer, the second oxide layer, and the third oxide layer contain Si. Also, in line analysis of element content by using a scanning transmission electron microscope-energy dispersive X-ray spectroscopy, the first oxide layer is a layer having Fe content smaller than Si content in the alloy particle, the second oxide layer is a layer having Fe content larger than the Si content in the alloy particle, and the third oxide layer is a layer having Fe content smaller than the Si content in the alloy particle.
Abstract:
A coil component includes a magnetic portion that includes metal particles and a resin material, a coil conductor embedded in the magnetic portion, and outer electrodes electrically connected to the coil conductor. The bottom surface of the magnetic portion includes grooves, and end portions of the coil conductor, extend into the grooves.
Abstract:
A manufacturing method that is capable of forming an electrode on any part of a surface of a sintered ceramic body in accordance with a simple approach, and a ceramic electronic component manufactured by the method. The method for manufacturing a ceramic electronic component includes steps of preparing a sintered ceramic body containing a metal oxide, irradiating an electrode formation region on a surface of the ceramic body with a laser to partially lower resistance of the ceramic body, thereby forming a low-resistance portion, and subjecting the ceramic body to plating to deposit a plated metal serving as an electrode on the low-resistance portion, and growing the plated metal to extend over the entire electrode formation region.
Abstract:
A coil component includes a drum core including a winding core portion, and first and second flange portions; and a first metal terminal which includes a bonding portion, a connecting portion, a mounting portion, an extending portion, and a joining portion. The first flange portion includes a main body portion, an end-surface-side protruding portion protruding from an outer end surface of the main body portion and a bottom-surface-side protruding portion protruding from a bottom surface of the main body portion. In a direction parallel to a second axis, a shortest distance from an end of the end-surface-side protruding portion on the second positive direction side to the joining portion is a first distance. A maximum distance from the end of the end-surface-side protruding portion to a side end surface of the end-surface-side protruding portion is a second distance. The first distance is larger than the second distance.
Abstract:
A decrease in mounting strength of a first metal terminal is suppressed in a coil component. A coil component includes a drum core including a winding core portion, first and second flange portions, a first metal terminal attached to the first flange portion, and a first wire. The first flange portion is connected to a first end in a direction along a central axis of the winding core portion. A first connection end of the first wire is joined to the first metal terminal. The first flange portion protrudes outward with respect to the winding core portion in a first positive direction. The first metal terminal includes a bonding portion, a mounting portion, and a coupling portion connecting the bonding portion and the mounting portion. The bonding portion is joined to an outer surface of the first flange portion with an adhesive interposed therebetween.
Abstract:
A coil component includes a drum core including a winding core portion, first and second flange portions, a first metal terminal attached to the first flange portion, and a first wire. The first flange portion is connected to a first end of the winding core portion in a direction along a central axis of the winding core portion. A first connection end of the first wire is joined to the first metal terminal. When viewed in a direction orthogonal to both a first positive direction and the inward direction, an acute angle formed by a virtual straight line parallel to the central axis and a tangent at an end of an inclined surface of the first metal terminal in the inward direction is larger than an acute angle formed by a virtual straight line and a tangent at an end of the inclined surface in the outward direction.
Abstract:
An adhesive layer is in contact with a rising portion of a metal terminal and an outer end surface of a flange portion of a drum-shaped core. A surface of the rising portion that faces the outer end surface is an inclined surface that inclines with respect to the outer end surface. The thickest portion of the adhesive layer is located near a position at which a distance between the inclined surface and the outer end surface is largest. The thickness of the thickest portion of the adhesive layer is 13 μm or more.
Abstract:
A coil component includes a magnetic portion that includes metal particles and a resin material, a coil conductor embedded in the magnetic portion, and outer electrodes electrically connected to the coil conductor. The average particle diameter of the metal particles in the magnetic portion is 1 μm or more and 5 μm or less, and the CV value of the metal particles is 50% or more and 90% or less.