摘要:
In view of the current pollution to sewage by nitrate nitrogen, the present invention discloses a method for promoting denitrification to remove nitrate nitrogen in water by magnetic resins. In the method disclosed by the present invention, magnetic anion exchange resins are in contact with and mixed with sewage, and nitrate nitrogen in the sewage is removed quickly and efficiently by both the ion exchange between the magnetic anion exchange resins and the nitrate nitrogen in the sewage and the denitrification enhanced by the magnetic material. Meanwhile, the regeneration and recycle of the magnetic anion exchange resins are realized by the denitrification of microorganisms.
摘要:
The present invention belongs to the technical field of water treatment, and in particular to a magnetic powder strengthened method for removing nitrate nitrogen and inorganic phosphorus, which includes the following steps: (1) mixing permanent magnetic material powder with paramagnetic Fe3O4 powder, and magnetizing the mixture in a magnetic field to prepare magnetic powder; (2) adding the magnetic powder directly or in a form of granular filler into a water treatment reaction vessel; and (3) allowing the to-be-treated water to enter the water treatment reaction vessel, performing a chemical reaction of removing nitrate nitrogen and inorganic phosphorus in the presence of a reducing agent, and discharging the water after the reaction is completed. By adopting the method of the present invention, a uniform and fine magnetic field can be provided, thus the reaction efficiency is improved, and the process is simplified and the cost is lowered.
摘要:
Disclosed is a composite functional resin, having the basic structure of Formula (I) and/or Formula (II), wherein AX is a quaternary ammonium group. In view of the problems that the existing resins have poor anti-interference ability, and poor ability to remove dissolved organic matter, disinfection by-product precursors, and anions such as nitrate, sulfate, phosphate and arsenate in water while sterilizing, the composite functional resin of the present invention has the ability to efficiently remove dissolved organic matter, disinfection by-product precursors, and anions such as nitrate, sulfate, phosphate, and arsenate in water, and has the advantages of efficient sterilization and high anti-interference ability. The composite functional resin can be applied in sterilization and water treatment.
摘要:
The present disclosure discloses a multi-stage apparatus and process for advanced oxidation treatment of wastewater, and belongs to the field of wastewater treatment in environmental protection. The apparatus includes a liquid-liquid mixing unit, a preheating unit, a gas-liquid mixing unit, a parallel photocatalytic reactor group and an oxidation tower connected in sequence. According to characteristics of free radical reactions, the parallel photocatalytic reactor group and the oxidation tower in the apparatus are reasonably designed, utilization rates of the ozone and the hydrogen peroxide are increased, and the wastewater treatment cost is reduced.
摘要:
A magnetic strong base anion exchange resin with high mechanical strength and a preparation method thereof, belonging to the field of resin materials. The preparation method comprises steps of: adding a conventional strong base anion exchange resin to a mixture of trivalent iron salt and divalent iron salt, and then mixing the resin adsorbed with the iron salt with aqueous ammonia so that Fe3O4 nanoparticles are contained in the resin structure. Then, the resin containing Fe3O4 nanoparticles is added to alcoholic solution dissolved with silane coupling agent to form a dense SiO2 coating on the surface of the resin, so as to obtain magnetic strong base anion exchange resin with high mechanical strength.
摘要:
An efficient combined advanced treatment method of electroplating wastewater is disclosed, which belongs to the technical field of electroplating wastewater treatment. The method includes: after pretreatments including cyanide breaking, dechromisation and coagulating sedimentation, introducing the electroplating wastewater to a contact oxidation tank for biochemical treatment, and settling the effluent from the contact oxidation tank down in an inclined pipe of a secondary sedimentation tank to realize the separation of the sludge from water; charging the effluent to a coagulating sedimentation tank, and undergoing coagulating sedimentation with the aid of a flocculant and a coagulant aid added; feeding the effluent, as an influent, to a resin adsorption tank for adsorption with a magnetic resin; and after passing through a filter, flowing the effluent after adsorption to a fixed bed resin adsorption unit, so as to realize the discharge up to standard and recycle of the effluent.
摘要:
A method for preparing high molecular weight poly(L-lactic acid) with high performance, including: a) providing a biogenic guanidine (BG) as a catalyst, and a nontoxic acid salt of an essential metal trace element as an activator (Act), and adding the catalyst, the activator, and L-lactide monomer to a polymerization reactor; b) evacuating under vacuum and charging the polymerization reactor with nitrogen for three consecutive times to remove air, and allowing the L-lactide monomer to undergo bulk polymerization under vacuum. The bulk polymerization includes a first reaction stage and a second reaction stage, which are separately carried out at different temperatures, pressures, and reaction times.
摘要:
Provided is a method for resourceful utilization of desorption liquid generated in the resin ion exchange process. This method effectively separates highly-concentrated organics and salts from the desorption liquid and puts these two components into comprehensive utilization.
摘要:
A method for preparing a bi-component, multi-network nanofibrous aerogel-supported heterojunction photocatalyst includes the following steps. Step 1, preparing ammoniated polyacrylonitrile nanofibers. Step 2, dispersing the ammoniated polyacrylonitrile nanofibers in water to obtain a first solution; dispersing cellulose nanofibers in water to obtain a second solution; and mixing, heating and lyophilizing the first solution with the second solution to obtain a bi-component, multi-network nanofibrous aerogel. Step 3, adding graphite carbon nitride, a ferric-iron containing reagent, 2,5-diaminoterephthalic acid, and the bi-component, multi-network nanofiber aerogel obtained in the step 2 into a N, N-dimethylformamide solvent to obtain a third solution, and carrying out a hydrothermal reaction on the third solution for 8-24 hours to obtain the bi-component, multi-network nanofibrous aerogel-supported heterojunction photocatalyst.
摘要:
A magnetic polymer adsorption material, preparation method and use thereof, which relate to the field of magnetic polymer materials. The preparation method comprises: (1) preparing magnetic nanoparticles; (2) dissolving the magnetic nanoparticles in a pore-forming agent, adding N-vinylpyrrolidone, divinylbenzene and an initiator respectively, and mixing uniformly; (3) adding an emulsifier and a dispersant into an aqueous solution; adding a part of the oil phase solution prepared in step (2) at the temperature below 60° C., and adding the rest of the oil phase solution when the temperature rises to 60° C. or above, reacting with stirring, precipitating and filtering the reacted solution, washing and drying the precipitate, and finally obtaining the magnetic polymer adsorption material. The material has the particle size of 2-100 μm, the magnetization of 5-19.5 emu/g and the specific surface area of 210-950 m2/g, and can be applied to the adsorption of inorganic and organic matters in solutions, the controlled release of inorganic and organic matters, and the separation of different substances.