Abstract:
The present invention provides a nonwoven fabric for a separation membrane which can prevent a bleed-through of a resin solution used for coating in a step of producing the separation membrane, can produce a separation membrane having a large permeate flux of a liquid by non-solvent induced phase separation, has high adhesiveness between a coating membrane and the nonwoven fabric, and can make the coating membrane thin, and a method of producing the same. In an exemplary aspect of the present invention, a two-layer nonwoven fabric 10 for a separation membrane is configured to have a surface layer 11 and a back surface layer 12, a coating surface of a coating solution during membrane formation is a surface 11a of the surface layer 11, and, when the nonwoven fabric 10 is impregnated with the coating solution for membrane formation, the surface layer 11 has a large Laplace force and the back surface layer 12 has a small Laplace force. The nonwoven fabric 10 for a separation membrane can be produced by sequentially papermaking a fiber dispersion liquid DS1 for a surface layer including one or more kinds of fine fibers FF having a small fiber diameter and one or more kinds of thick fibers TF having a fiber diameter larger than that of the fine fibers FF and a fiber dispersion liquid DS2 for a back surface layer consisting of the thick fibers TF using a wet papermaking method.
Abstract:
Provided is a nanofiltration (NF) or reverse osmosis (RO) membrane made of a hard carbon film that has oil resistance and can efficiently separate not only ions in water but also dye molecules present in an organic solvent, a filtering filter, a two-layer-bonded-type filtering filter, and methods for manufacturing the same, using a nanofiltration (NF) or reverse osmosis (RO) membrane (10) made of a hard carbon film characterized by being made of a hard carbon film, having a thickness (t10) of from 5 nm to 300 nm, and having a maximum pore diameter of less than 0.86 nm.
Abstract:
An objective of the present invention is to provide a method for manufacturing a soft ocular lens in which the surface of the lens is hydrophilized by means of plasma processing, wherein a substrate surface can be sufficiently hydrophilized by performing, once, a reaction between the substrate and a hydrophilic polymer. Another object of the present invention is to provide a soft ocular lens with sufficient hydrophilicity which comprises only one layer comprising a hydrophilic polymer on a substrate surface. A substrate comprising a hydrocarbon group-containing polysiloxane is subjected to plasma processing with an inert gas such as nitrogen, to form a radical including Si—CH2 on the substrate surface, and produce radical rearrangement with a hydrophilic polymer, thereby causing the hydrophilic polymer to bind to the substrate surface by recombination of a radical generated in the hydrophilic polymer with the substrate.
Abstract:
Provided is a nanofiltration (NF) or reverse osmosis (RO) membrane made of a hard carbon film that has oil resistance and can efficiently separate not only ions in water but also dye molecules present in an organic solvent, a filtering filter, a two-layer-bonded-type filtering filter, and methods for manufacturing the same, using a nanofiltration (NF) or reverse osmosis (RO) membrane (10) made of a hard carbon film characterized by being made of a hard carbon film, having a thickness (t10) of from 5 nm to 300 nm, and having a maximum pore diameter of less than 0.86 nm.