Abstract:
The main object is to provide a novel material with excellent charge and discharge characteristics, such as a high utilization rate of a positive electrode, a high capacity, and good cycle characteristic, in which the material is a compound containing as the major component lithium sulfide useful as a cathode active material for lithium secondary batteries. The invention provides a lithium sulfide-iron-carbon composite containing lithium, iron, sulfur and carbon as constituent elements, with lithium sulfide (Li2S), as the main phase, having a crystallite size of 50 nm or less as calculated from the half width of the diffraction peak based on the (111) plane of Li2S as determined by X-ray powder diffraction.
Abstract:
The present invention provides a novel lithium titanium sulfide, lithium niobium sulfide, or lithium titanium niobium sulfide that contains a sulfide containing lithium, titanium and/or niobium, and sulfur as constituent elements, and that has excellent charge-discharge performance (especially excellent charge-discharge capacity and charge-discharge potential) useful as a cathode active material or the like for lithium batteries, such as metal lithium secondary batteries or lithium-ion secondary batteries. Particularly preferred are, for example, (1) lithium titanium sulfide containing lithium, titanium, and sulfur as constituent elements and having a cubic rock salt crystal structure, (2) lithium niobium sulfide containing lithium, niobium, and sulfur as constituent elements and having a diffraction peak at a specific position in an X-ray diffractogram, and (3) lithium titanium niobium sulfide containing lithium, titanium, niobium, and sulfur as constituent elements and having a diffraction peak at a specific position in an X-ray diffractogram.
Abstract:
The sulfide of the present invention comprises an amorphous (lithium) niobium sulfide having an average composition represented by formula (1): Lik1NbSn1 (wherein 0≤k1≤5; 3≤n1≤10; and when n1≥3.5, k1≤0.5), or an amorphous (lithium) titanium niobium sulfide having an average composition represented by formula (2): Lik2Ti1-m2Nbm2Sn2 (wherein 0≤k2≤5; 0
Abstract:
The present invention provides a novel lithium titanium sulfide, lithium niobium sulfide, or lithium titanium niobium sulfide that contains a sulfide containing lithium, titanium and/or niobium, and sulfur as constituent elements, and that has excellent charge-discharge performance (especially excellent charge-discharge capacity and charge-discharge potential) useful as a cathode active material or the like for lithium batteries, such as metal lithium secondary batteries or lithium-ion secondary batteries. Particularly preferred are, for example, (1) lithium titanium sulfide containing lithium, titanium, and sulfur as constituent elements and having a cubic rock salt crystal structure, (2) lithium niobium sulfide containing lithium, niobium, and sulfur as constituent elements and having a diffraction peak at a specific position in an X-ray diffractogram, and (3) lithium titanium niobium sulfide containing lithium, titanium, niobium, and sulfur as constituent elements and having a diffraction peak at a specific position in an X-ray diffractogram.
Abstract:
The sulfide of the present invention comprises an amorphous (lithium) niobium sulfide having an average composition represented by formula (1): Lik1NbSn1 (wherein 0≦k1≦5; 3≦n1≦10; and when n1≧3.5, k1≦0.5), or an amorphous (lithium) titanium niobium sulfide having an average composition represented by formula (2): Lik2Ti1-m2Nbm2Sn2 (wherein 0≦k2≦5; 0
Abstract:
The main object is to provide a novel material with excellent charge and discharge characteristics, such as a high utilization rate of a positive electrode, a high capacity, and good cycle characteristic, in which the material is a compound containing as the major component lithium sulfide useful as a cathode active material for lithium secondary batteries. The invention provides a lithium sulfide-iron-carbon composite containing lithium, iron, sulfur and carbon as constituent elements, with lithium sulfide (Li2S), as the main phase, having a crystallite size of 50 nm or less as calculated from the half width of the diffraction peak based on the (111) plane of Li2S as determined by X-ray powder diffraction.