Abstract:
Systems and methods for minimizing demand charges, including determining one or more optimal monthly demand charge thresholds based on historical load data, time of use charges, demand charges, and energy storage unit size for one or more end users. A grid power dispatch setpoint is calculated for a particular time step based on a daily load forecast and a daily economic dispatch solution based on the determined optimal monthly demand charge thresholds. A grid power dispatch setpoint for a subsequent time step is determined by iteratively solving the daily energy dispatch for the subsequent time step to determine an optimal grid power dispatch setpoint. Energy and demand charges are minimized by controlling charging and discharging operations for the energy storage unit in real-time based on the determined optimal grid power dispatch setpoint.
Abstract:
A system and method for controlling operation of one or more grid scale energy storage systems (GSESSs). The method includes generating at least one time series model to provide forecasted pricing data for a plurality of markets, determining a reserve capacity for the one or more GSESSs to provide one or more real-time operation services, determining battery life and degradation costs for one or more batteries in the one or more GSESSs to provide battery life and degradation costs, and optimizing bids for the plurality of markets to generate optimal bids based on at least one of the forecasted pricing data, the battery life and degradation costs and the reserve capacity.
Abstract:
A computer-implemented method executed on a processor for outputting a smoothed photovoltaic (PV) power output from a battery of a power control system communicating with one or more microgrids is presented. The method includes curtailing an input signal received from a plurality of sensors, smoothing the input signal by employing a fuzzy logic based low pass filter having an adaptive window to generate a power reference command, applying a hard ramp rate limit to the power reference command, adjusting battery power output of the battery to satisfy battery constraints and a no-power-from-grid constraint, and distributing energy from the battery based on the adjusted battery power output.
Abstract:
A system, method, and computer-program product are provided for controlling a distributed energy storage system (ESS) operatively coupled to one or more microgrids. The system includes a memory for storing program code. The system further includes a processor for running the program code to respectively assign a first, a second, and a third set of weights to a first, a second, and a third objective function formulated to minimize an ESS cost, minimize a Demand Charge (DC) cost, and maximize a Photovoltaic utilization, respectively. The processor further runs the program code to execute a multi-objective ESS optimizing engine to obtain a set of different monthly-based optimal solutions for controlling the ESS by concurrently processing the first, the second, and the third objective functions using different ones of the weights from the first, the second, and the third set of weights.
Abstract:
Computer-implemented methods and, a system are provided. A method includes constructing by an Energy Management System (EMS), one or more optimization-based techniques for resilient battery charging based on an optimization problem having an EMS cost-based objective function. The one or more optimization-based techniques are constructed to include a battery degradation metric in the optimization problem. The method further includes charging, by the EMS, one or more batteries in a power system in accordance with the one or more optimization-based techniques.
Abstract:
Systems and methods to perform multi-objective energy management of micro-grids include determining, by an advisory layer with Model Predictive Control (MPC) using a processor, long-term power management directives that include a charging threshold that characterizes one or more power sources, where the advisory layer provides optimal set points or reference trajectories to reduce a cost of energy; and determining real-time actions based on the charging threshold to adaptively charge a battery from the one or more power sources or to discharge the battery.
Abstract:
A system and method for management of one or more grid-scale Energy Storage Systems (GSSs), including generating an optimal GSS schedule in the presence of frequency regulation uncertainties. The GSS scheduling includes determining optimal capacity deployment factors to minimize penalties for failing to provide scheduled energy and frequency regulation up/down services subject to risk constraints; generating a schedule for a GSS unit by performing co-optimization using the optimal capacity deployment factors, the co-optimization including tracking upper and/or lower bounds on a state of charge (SoC) and including the bounds as a hard constraints; and calculating risk indices based on the optimal scheduling for the GSS unit, and outputting an optimal GSS schedule if risk constraints are satisfied. A controller charges and/or discharges energy from GSS units based on the generated optimal GSS schedule.
Abstract:
Systems and methods for controlling Battery Energy Storage Systems (BESSs), including determining historical minimum state of charge (SOC) for peak shaving of a previous day based on historical photovoltaic (PV)/load profiles, historical demand charge thresholds (DCT), and battery capacity of the BESSs. A minimum SOC for successful peak shaving of a next day is estimated by generating a weighted average based on the historical minimum SOC, and optimal charging/discharging profiles for predetermined intervals are generated based on estimated PV/load profiles for a next selected time period and grid feed-in limitations. Continuous optimal charging/discharging functions are provided for the one or more BESSs using a real-time controller configured for overriding the optimal charging/discharging profiles when at least one of a high excess PV generation, a peak shaving event, or a feed-in limit violation is detected.
Abstract:
A system and method for management of one or more grid-scale Energy Storage Systems (GSSs), including generating an optimal GSS schedule in the presence of frequency regulation uncertainties. The GSS scheduling includes determining optimal capacity deployment factors to minimize penalties for failing to provide scheduled energy and frequency regulation up/down services subject to risk constraints; generating a schedule for a GSS unit by performing co-optimization using the optimal capacity deployment factors, the co-optimization including tracking upper and/or lower bounds on a state of charge (SoC) and including the bounds as a hard constraints; and calculating risk indices based on the optimal scheduling for the GSS unit, and outputting an optimal GSS schedule if risk constraints are satisfied. A controller charges and/or discharges energy from GSS units based on the generated optimal GSS schedule.
Abstract:
The invention is directed to a method or management system which 1) dispatches high efficiency generators first, 2) charges/discharges energy storage units in a way to enhance efficiency of generators in the system or avoid the necessity of dispatching generators during their low efficiency operations at all. In this way the method or management system utilizes its knowledge about the efficiency characteristics of generators in the system and its ability to change the net demand seen by the generators through charge and discharge of energy storage units to increase the overall efficiency of the energy system.