Abstract:
A substrate for a LCD device improves the flatness of the outermost substrate surface in the contact region for interconnecting an electrode of a switching element (e.g., a TFT) and a pixel electrode to each other in each pixel. Switching elements for respective pixels are formed on a transparent plate. Protrusions for the respective pixels are formed on the plate to protrude to a vicinity of an outermost surface of the substrate. Each protrusion raises an electrode of a corresponding switching element to the vicinity of the outermost surface in the corresponding pixel. A planarization layer forming the outermost surface is formed to cover the switching elements, the protrusions, and the electrodes of the elements in all the pixels. Pixel electrodes for the respective pixels are formed on the outermost surface. Each pixel electrode contacts the corresponding electrode of the element in the vicinity of the outermost surface.
Abstract:
There is provided a liquid crystal display device including a display screen comprised of a plurality of areas in each of which a pixel pattern is formed, wherein any two areas located adjacent to each other, among the areas, have at least two stitches therebetween.
Abstract:
Light exposure areas 103 and light masking areas 104 in a sole reticle are arrayed in alternation to one another in both the longitudinal and transverse directions. Substrate is exposed to light by multi-domain light exposure using this reticle so that the respective areas of the reticle exposed to light with respective shots A to B, B to C . . . , N to M are not adjacent to one another in the boundary portions of the reticle shifted for executing the respective shots, thus relaxing the difference in illuminance between the respective shots and the difference in finish of the boundary portions of the shots, such differences becoming imperceptible to human eyes upon displaying liquid crystal display apparatus.