Abstract:
A liquid crystal display device of IPS mode includes an array of pixels arranged in a matrix pattern by crossing a plurality of video signal lines and a plurality of scanning signal lines each other. Each of the pixels is provided with at least a switching element. A transparent insulating film is provided on both signal lines, and a plurality of pixel electrodes, common electrodes and common lines are provided on the transparent insulating film. The common lines are formed in a grid-shaped pattern such that a first group of the common lines is made of a first conductor having lower reflectivity against optical light than that of metal while a second group of the common lines is made of a second conductor including a metal layer such that said first group and said second group are crossing each other along said video signal lines and said scanning signal lines.
Abstract:
The present invention provides a thin-film transistor manufactured on a transparent substrate having a structure of a top gate type crystalline silicon thin-film transistor in which a light blocking film, a base layer, a crystalline silicon film, a gate insulating film, and a gate electrode film arranged not to overlap at least a channel region are sequentially formed on the transparent substrate; wherein the channel region having channel length L, LDD regions having LDD length d on both sides of the channel region, a source region, and a drain region are formed in the crystalline silicon film; the light blocking film is divided across the channel region; and interval x between the divided light blocking films is equal to or larger than channel length L and equal to or smaller than a sum of channel length L and a double of LDD length d (L+2d). Thereby, the cost for manufacturing the thin-film transistor is low, and the photo leak current of the thin-film transistor is suppressed.