Abstract:
A plugged honeycomb structure has a plurality of cells defined by partition walls to become through channels for fluid, one end of each of the predetermined cells is plugged by a plugging member, the other end of each of the residual cells is plugged by the plugging member, the partition wall is made of a cordierite component as a main component, and a value obtained by dividing Young's modulus of a plugging structure portion formed by the partition walls and the plugging member by Young's modulus of a cell structure portion formed by the partition walls is in a range of 1.05 to 2.00.
Abstract:
Provided is a technique to manufacture a honeycomb structure reducing a width of dimensional difference generated during firing between an end part and a central part and having excellent thermal shock resistance, and the method includes: a honeycomb formed body preparing step of extruding a kneaded material including a cordierite forming raw material A, to prepare a formed body; a plugged honeycomb formed body preparing step of filling cell openings thereof with a plugging material which includes a forming raw material containing a cordierite forming raw material B and resin balloon of 1.0 to 15 mass % and has a difference in firing shrinkage rate of −1.0 to +2.0% from the formed body, to prepare a plugged formed body; and a honeycomb structure preparing step of firing the prepared plugged formed body, to prepare a honeycomb structure provided with porous plugged portions.
Abstract:
A honeycomb structure according to at least one embodiment of the present invention includes: a honeycomb structure portion having: an outer peripheral wall; and a partition wall arranged inside the outer peripheral wall to define a plurality of cells each extending from a first end surface of the honeycomb structure portion to a second end surface thereof to form a flow path; and a pair of electrode portions arranged on an outer peripheral surface of the outer peripheral wall of the honeycomb structure portion. The electrode portions are each a porous body in which particles of silicon carbide are bound by a binding material, the silicon carbide contains α-type silicon carbide and β-type silicon carbide, and the silicon carbide has a D50 in a volume-based cumulative particle size distribution of 25 μm or less.
Abstract:
An outer periphery coating material being coated onto an outer peripheral surface of a ceramic honeycomb structure to form an outer periphery coated layer. The outer periphery coating material comprises: a particle mixture containing cordierite particles and amorphous silica particles in a mass ratio of from 40:60 to 80:20; and from 10 to 30% by mass of crystalline inorganic fibers in an outer percentage relative to the particle mixture. An average particle diameter of the cordierite particles is different from an average particle diameter of the amorphous silica particles.