Abstract:
A plugged honeycomb structure in which in a cross section of a honeycomb structure body which is perpendicular to an extending direction of cells, inflow cells are disposed to surround an outflow cell, and the number of the inflow cells is larger than the number of the outflow cells, and the cross section has a plurality of intersecting portions of partition walls each defining the inflow cells which are adjacent to each other, and in 60% or more of a total number of the intersecting portions, a relation between a diameter (D1) of a circle inscribed in the intersecting portion and a diameter (D0) of a circle inscribed in the partition wall defining the inflow cell and the outflow cell which are adjacent to each other satisfies D1/(√2×D0)=1.20 to 1.80
Abstract:
A honeycomb structure has porous partition walls defining and forming a plurality of cells communicating between two end faces, and a circumferential wall formed integrally with the partition walls. The cells include partial cells positioned in an outermost circumferential portion of the honeycomb structure and being partially in contact with the circumferential wall, and normal cells other than the partial cells. As to the normal cells, a plugging portion is formed in one end portion of each normal cell, and as to the partial cells, in the partial cells in which the plugging portion to be formed in one end portion thereof, the plugging portion is not formed in at least a part of a partial cell in which an area ratio obtained by Equation (1) is smaller than 80%: the area ratio(%)=an area of the partial cell/an area of the normal cell×100 (1).
Abstract:
Provided is a technique to manufacture a honeycomb structure reducing a width of dimensional difference generated during firing between an end part and a central part and having excellent thermal shock resistance, and the method includes: a honeycomb formed body preparing step of extruding a kneaded material including a cordierite forming raw material A, to prepare a formed body; a plugged honeycomb formed body preparing step of filling cell openings thereof with a plugging material which includes a forming raw material containing a cordierite forming raw material B and resin balloon of 1.0 to 15 mass % and has a difference in firing shrinkage rate of −1.0 to +2.0% from the formed body, to prepare a plugged formed body; and a honeycomb structure preparing step of firing the prepared plugged formed body, to prepare a honeycomb structure provided with porous plugged portions.
Abstract:
In the plugged honeycomb structure, 30% or more of first intersection portions in which a first partition wall intersects a second partition wall are first specific intersection portions in which a diameter of a maximum inscribed circle drawn in the first intersection portion is a specific size for a shortest distance between an inflow cell and an outflow cell, and 30% or more of non-first intersection portions other than the first intersection portions are non-first specific intersection portions in which a diameter of a maximum inscribed circle drawn in a non-first intersection portion is a specific size for a shortest distance between the inflow cells or the outflow cells.
Abstract:
A sealed honeycomb structure may include porous walls dividedly forming inlet cells and outlet cells extending from an end surface of an inlet side to an end surface of an outlet side, an outlet side sealing portion, and an inlet side sealing portion, wherein at least one outlet cell is a reinforced cell, where a reinforced part for reinforcing the outlet cell is formed at at least one corner portion at which the walls on a cross-section vertical to an extending direction of the cell cross each other, and wherein the inlet cell is a non-reinforced cell where the reinforced part is not formed at all the corner portions at which the walls on the cross-section vertical to the extending direction of the cell cross each other.