Abstract:
A spark plug includes: an insulator having an axial hole; a conductive member disposed around the insulator; a center electrode disposed inside the axial hole, having a bar shape extending in the axial direction, and located on a rear end side with respect to a front end of the conductive member; a ground electrode forming a spark gap between the ground electrode and the center electrode; and a connection part including a plurality of spokes extending in a radial direction whose inner ends are connected to the ground electrode, and connecting the conductive member to the ground electrode. The connection part includes a joint part that is jointed to an inner surface of the conductive member, and the ground electrode has at least one of a notch and a groove at a position that is different from a position connected to the spokes in a circumferential direction.
Abstract:
A pressure sensor including a housing extending along an axial line, a diaphragm fixed to a front-end side of the housing, a piezoelectric unit disposed in a hole in the housing and including a piezoelectric element, a transmission member that transmits deformation of the diaphragm to the piezoelectric unit, and a guide member having a through hole extending along the axial line and surrounding the piezoelectric unit in the through hole. (SL/AL)≤0.26 is satisfied in the cross section perpendicular to the axial line passing through the piezoelectric element, where SL is the maximum value of the distance in the radial direction between the center of the through hole and the center of the piezoelectric element and AL is the maximum value of the distance in the radial direction between the outside surface of the piezoelectric element and the center of the through hole.
Abstract:
A method of manufacturing a pressure sensor including a tubular housing having a lid-shaped support plate formed at one end of the housing, a diaphragm, a piezoelectric element for outputting an electrical signal corresponding to pressure received by the diaphragm, and a rod-shaped transmission section for transmitting the pressure to the piezoelectric element. The method includes the steps of accommodating the piezoelectric element into the housing, and fixing the transmission section to the housing through the diaphragm in a state in which a predetermined preload is applied to the piezoelectric element in an axial direction of the housing by pressing the piezoelectric element against the support plate by the transmission section.
Abstract:
A pressure sensor includes: a diaphragm joined to a front side of a housing via a joint portion; a sensor portion; a connection portion connecting the diaphragm to the sensor portion; and a heat receiving portion disposed at the front side of the diaphragm. When: a minimum value of an area of a minimum inclusion region which is a virtual region, which include a cross-section of a portion from the heat receiving portion to the diaphragm and of which an overall length of a contour become minimum on a cross-section perpendicular to the axial line, is defined as a connection area Sn; and an area of a region surrounded by the joint portion on a projection plane perpendicular to the axial line when the diaphragm and the heat receiving portion are projected onto the projection plane is defined as a diaphragm effective area Sd, (Sn/Sd)≤0.25 is satisfied.
Abstract:
A pressure sensor includes a tubular housing; a diaphragm which is joined to one end portion of the housing through a fusion zone; and a sensor element which is disposed in the housing and to which pressure received by the diaphragm is transmitted. As viewed in a section which contains the center axis of the housing, a pair of the fusion zones exist, and each of the fusion zones is formed in such an inclined manner that its distance from the center axis increases as it extends from the outer surface of the diaphragm toward the other-end-portion side of the housing.
Abstract:
An ignition system includes an ignition plug, a discharge power supply for applying a high voltage to the gap of the ignition plug, a high-frequency power supply for supplying a high-frequency current to the gap, a matching unit provided between the ignition plug and the high-frequency power supply, and a mixer through which currents output from the two power supplies flow. An oscillation frequency fs (Hz) which maximizes the current flowing between the matching unit and the mixer when spark discharge is generated and an oscillation frequency fo (Hz) which maximizes the current flowing between the matching unit and the mixer when spark discharge is not generated satisfy a relation fs/fo≧0.85. Thus, a current whose oscillation frequency is equal to the oscillation frequency fs flows between the matching unit and the mixer when spark discharge is not generated.