Abstract:
An optical fiber cable according to the present disclosure includes a cable core having one or a plurality of optical fiber core wires therein; an outer cover which covers the cable core and has a concave portion or a plurality of convex portions for an outer edge of a cross section perpendicular to a long axis direction of the outer cover; and an impression which is marked on the concave portion or on a portion sandwiched between the plurality of convex portions of a side surface of the outer cover.
Abstract:
An optical cable according to the present disclosure has a structure in which at least one or more optical fiber cores and an interposition that prevents optical fibers from coming into contact with each other are bundled by a bundle tape.
Abstract:
Provided is an optical fiber ribbon capable of achieving higher density and reduction in diameter and accurately placing optical fibers in V-shape grooves in a fusion machine without failure. The optical fiber ribbon 1 includes three or more of optical fibers 2 arranged in parallel and connecting portions 3 connecting adjacent two optical fibers 2 together, the connecting portions 3 being intermittently provided in each of a ribbon longitudinal direction and a ribbon width direction. The connecting portions 3 are each formed in such a manner as to fill resin into a gap S formed between adjacent two optical fibers 2, and both surfaces of the respective connecting portions 3 are each formed into a recess having a concave shape curved toward a center of the gap S to separate from lines 4,5 each connecting contact points of the optical fibers 2 when being placed on a horizontal surface.
Abstract:
Provided is an optical fiber ribbon capable of achieving higher density and reduction in diameter and accurately placing optical fibers in V-shape grooves in a fusion machine without failure. The optical fiber ribbon 1 includes three or more of optical fibers 2 arranged in parallel and connecting portions 3 connecting adjacent two optical fibers 2 together, the connecting portions 3 being intermittently provided in each of a ribbon longitudinal direction and a ribbon width direction. The connecting portions 3 are each formed in such a manner as to fill resin into a gap S formed between adjacent two optical fibers 2, and both surfaces of the respective connecting portions 3 are each formed into a recess having a concave shape curved toward a center of the gap S to separate from lines 4,5 each connecting contact points of the optical fibers 2 when being placed on a horizontal surface.
Abstract:
An optical fiber ribbon includes a plurality of optical fiber cores arranged in parallel spaced from each other; and a tape forming member having a coating portion covering an outer circumference of the optical fiber cores, and a coupling portion, integrally formed with the coating portion, intermittently coupling adjacent optical fiber cores, wherein the coating portion has an opening portion to expose a part of surfaces of the optical fiber cores, and at least a part of the coating portion is continuous in a longitudinal direction of the optical fiber cores.
Abstract:
It is an object of the present invention to suppress a coating resin from being shaved off in an event where optical fibers are sent out from a coating dice. When a Young's modulus of ultraviolet curable resins 13 located on outermost layers of optical fibers 3 is 300 MPa or more, and the Young's modulus is 300 MPa to 600 MPa, a plurality of the optical fibers 3 in which friction force measured by the following measurement method is 0.3 N or less are arranged in parallel to one another, these respective optical fibers 3 are fixed to one another intermittently along a longitudinal direction thereof, and adhered portions 5 are formed.
Abstract:
An optical fiber cable of the present disclosure is formed by assembling a plurality of drop optical cables, and each of the drop optical cables has a structure where at least one or more optical fiber cores and a tension fiber or a tension member is embedded in a sheath such that the drop optical cable has two or more axes each having a minimum value of a second moment of area with respect to arbitrary neutral planes, and even an optical cable obtained by assembling drop optical cables has a structure having two or more axes each having a minimum value of the second moment of area with respect to arbitrary neutral planes.
Abstract:
An object is to provide a closure with a structure having a drainage function to eliminate water immersion into a coated optical fiber against temporary flooding and to prevent water from continuously contacting the coated optical fiber. Another object is to provide a closure with improved workability for opening and closing. A closure according to the present invention protects a connection part that connects a coated optical fiber enclosed in a optical fiber cable with a coated optical fiber enclosed in a optical fiber cable. The closure includes a coated optical fiber housing that divides an interior of the closure into a first space that is on a side of a road and has a main body cable insertion hole for inserting the optical fiber cables from an exterior and a second space that is on an opposite side of the road and includes the connection part. The coated optical fiber housing has a frustum shape with two bases each open and a base with a smaller area of the two bases protruding toward the side of the road. The base with the smaller area of the two bases is a cable insertion hole for inserting the optical fiber cable from the first space into the second space and is not in contact with a bottom surface of the first space on the side of the road.
Abstract:
An object of the present disclosure is to provide a method of laying an optical cable that is capable of laying and removing the optical cable in a stable place without civil engineering works. To achieve the above-mentioned object, a method of laying an optical cable according to the present disclosure includes laying the optical cable and two laying strips on a road surface or a wall surface so that the optical cable is sandwiched between side surfaces of the two laying strips.
Abstract:
A method of laying an optical cable according to the present disclosure includes: installing a laying strip, in which the optical cable is to be embedded, on a road surface or a wall surface; forming a cut line, for embedding the optical cable, on the installed laying strip; and embedding the optical cable in the formed cut line.