摘要:
An optical fiber cable includes: a sheath; a core that is housed in the sheath and comprises optical fibers; tensile strength members embedded in the sheath; and ripcords embedded in the sheath. Recesses and protrusions are disposed alternately in a circumferential direction on an outer circumferential surface of the sheath. The recesses each include: two connecting portions respectively connected to radial inner ends of two adjacent protrusions; and a bottom surface positioned between the two connecting portions. In a transverse cross-sectional view, the ripcords are positioned inside some of the protrusions, and the tensile strength members are positioned inside the remaining protrusions.
摘要:
An optical fiber cable is provided. The cable includes: an optical fiber core having a central axis; a presser winding covering the optical fiber core; a sheath covering the presser winding; two tension members in the sheath and facing each other with the central axis therebetween; and two rip cords facing each other with the central axis therebetween and being in direct contact with the sheath and the presser winding. The optical fiber core includes a plurality of optical fiber tapes arranged around the central axis and having mutually different stripe ring marks applied thereon. Each optical fiber tapes includes a plurality of optical fibers intermittently adhered to each other.
摘要:
A fiber-bundle sub-assembly includes an array of fiber bundles each having at least one optical fiber. The fiber bundles have select relative positions in the array. The sub-assembly includes first and second connecting elements that run along the array and that are secured to axially staggered top and bottom anchors to define first and second connecting spans that cross first and second sides of the array, with the first and second sides defined by first and second sets of fiber bundles. The first and second connecting spans are respectively attached to the first and second sets of fibers bundles to maintain the select relative positions of the fiber bundles even when the connecting spans are cut near one of the anchors during processing. A loose-tube cable that includes the fiber-bundle sub-assembly and a method of connectorizing the fiber bundles while maintaining their select positions are also disclosed.
摘要:
An objective of the disclosure is to improve workability in extracting optical fibers in an optical fiber unit in which a bundle of optical fibers is bundled by bundling members, and to suppress/prevent an increase in transmission loss even when tension is applied to the bundling members. This optical fiber unit includes: a plurality of optical fibers; and at least three bundling members that bundle the optical fibers into a bundle. A first bundling member, among the plurality of bundling members, is arranged along a length direction of the bundle of optical fibers so as to be wound on an outer circumference of the bundle of optical fibers. The first bundling member is joined with a second bundling member at a contact point where the first bundling member contacts the second bundling member, and is joined with a third bundling member, which is different from the second bundling member, at a contact point where the first bundling member contacts the third bundling member. The first bundling member's winding direction with respect to the bundle of optical fibers is reversed at the contact point with the second bundling member and at the contact point with the third bundling member.
摘要:
A twisted, multicore fiber communicates light input to each core to an output. The twisting mitigates relative time delays of the input light traveling through each of the cores in the multicore fiber to the output caused by bending of that multicore fiber. An example application is in an optical network that includes an optical input terminal and an optical sensor connected by a twisted multicore connecting fiber. One example of twisted multicore optical fiber is helically-wrapped, multicore fiber.
摘要:
A manufacturing method for an optical fiber ribbon, in which: a plurality of optical fibers are arranged in parallel and the neighboring optical fibers are partially coupled with each other at given intervals in a longitudinal direction to form a subunit; and the optical fibers positioned at side edges of the neighboring subunits are partially coupled with each other at a given intervals in the longitudinal direction, includes: sending out the optical fibers in a parallel manner with intervals provided therebetween, applying an uncured resin to the optical fibers, continuously changing positions at which the uncured resin is interrupted by a plurality of interrupt members, and forming coupled portions at which the optical fibers are coupled to each other by irradiating resin curing energy, wherein a moving period or phase of the interrupt members is changed for every arbitrary optical fibers.
摘要:
The present invention relates to an insert for an optical fiber assembly through which an optical fiber element can be pulled out without damage. The insert is provided for guiding a part of the optical cable (2) which comprises at least one optical fiber element (3) and being accommodated in a housing of the optical fiber assembly, wherein said part of the optical cable (2) has a cut-out portion in which a jacket of said optical cable (2) is partially removed, thereby exposing said at least one optical fiber element (3). The insert (1) comprises an optical cable guidance means (4) for guiding said optical cable (2) across the insert (1); a recess (5) surrounding the exposed optical fiber element (3) and a bend element (6) arranged at an end portion of the recess (5) and projecting from the recess (5) in a curved manner.
摘要:
A preconnectorized outdoor cable streamlines the deployment of optical waveguides into the last mile of an optical network. The preconnectorized outdoor cable includes a cable and at least one plug connector. The plug connector is attached to a first end of the cable, thereby connectorizing at least one optical waveguide. The cable has at least one optical waveguide, at least one tensile element, and a cable jacket. Various cable designs such as figure-eight or flat cables may be used with the plug connector. In preferred embodiments, the plug connector includes a crimp assembly having a crimp housing and a crimp band. The crimp housing has two half-shells being held together by the crimp band for securing the at least one tensile element. When fully assembled, the crimp housing fits into a shroud of the preconnectorized cable. The shroud aides in mating the preconnectorized cable with a complimentary receptacle.
摘要:
Between an optical fiber (LF11, LFB12, LFB13) and a surrounding core covering (AH11, AH12, SB13) of an optical transmission element (OE11 to OE13) there is at least one dry and compressible fixating element (FE11 to FE13), which surrounds the optical fiber totally or partially, and which exerts a defined contact pressure against the core covering and against the optical fiber for fixating the optical fiber in the longitudinal direction of the transmission element. The fixating element is further formed and positioned in such a way, that position changes of the optical fiber due to bending or elongation are possible. In this way, unallowable attenuation increases in the optical fiber due to bending or position changes can be avoided.
摘要:
A preconnectorized outdoor cable streamlines the deployment of optical waveguides into the last mile of a optical network. The preconnectorized outdoor cable includes a cable and at least one plug connector. The plug connector is attached to a first end of the cable, thereby connectorizing at least one optical waveguide. The cable has at least one optical waveguide, at least one tensile element, and a cable jacket. Various cable designs such as figure-eight or flat cables may be used with the plug connector. In preferred embodiments, the plug connector includes a crimp assembly having a crimp housing and a crimp band. The crimp housing has two half-shells being held together by the crimp band for securing the at least one tensile element. When fully assembled, the crimp housing fits into a shroud of the preconnectorized cable. The shroud aides in mating the preconnectorized cable with a complimentary receptacle.