Abstract:
A method comprises obtaining a transmission signal to be power-amplified in a power amplifier (361) prior to transmission; separating the transmission signal into two or more polyphase components of the transmission signal; feeding one or more polyphase components of the transmission signal comprised in the two or more polyphase components to each of two or more parallel predistortion circuits (320,321,322); selecting a dedicated predistortion model and dedicated predistortion coefficients for each of the two or more parallel predistortion circuits (320,321,322); performing non-linear memory-based modeling on the transmission signal according to the selected dedicated predistortion models and coefficients using the one or more polyphase components; and combining output signals of the two or more parallel predistortion circuits (320,321,322) to form a predistorted transmission signal (y[n]) to be applied to the power amplifier (361).
Abstract:
Various antennas may benefit from improved signaling. For example, it may be helpful for a signal in a high occupied bandwidth environment to be compressed using a block floating point format, which can also help to reduce power consumption. A method may include separating an incoming signal at a digital front end or a converter into two alternating signals comprising a coarse signal and a fine signal. The method may also include transmitting the coarse signal and the fine signal from the digital front end to the converter or from the converter to the digital front end. The coarse signal and the fine signal may be combined to generate an approximation of the incoming signal.
Abstract:
A method including determining whether a transmitter of an apparatus has information to transmit; and causing a power amplifier of said apparatus to enter a first power state in response to said determining; wherein said determining is carried out within a radio portion of said apparatus.
Abstract:
Enhancing the intermodulation performance of an RF power amplifier by determining a coarse time delay represented by an integer TI; determining a reference point for a transmitted signal waveform of the RF power amplifier; shifting the waveform by a set of offsets including a plurality of non-integer fractional steps; correlating the transmitted signal waveform with a feedback signal waveform to obtain a respective correlation value for each of corresponding fractional steps; obtaining an accurate fractional delay value by selecting a fractional step having a highest respective correlation value; applying the obtained correct fractional delay value to the transmitted signal waveform to provide a compensated transmitted signal waveform and combining the compensated transmitted signal waveform with the feedback signal waveform to reduce at least one intermodulation product of the RF power amplifier.
Abstract:
Linearizing Power Amplifiers' Outputs in Multi-Antenna System There is provided power efficient and simple structure for linearizing power amplifiers' outputs in multi-antenna beamforming systems. Beamforming factors are obtained for controlling transmission beams of the antennas in an analogue/hybrid beamforming system. At least one power amplifier model is determined on the basis of the power amplifiers' outputs and the beamforming factors. Predistortion parameters, for feeding a predistorted signal to power amplifiers for linearizing the power amplifiers' outputs, are determined such that after the operating parameters of the power amplifiers have been adjusted, errors in power amplifiers' outputs are reduced.
Abstract:
It is provided a method for providing feedback to pre-distorters in branches of a MISO system such that the pre-distortion cancels distortions caused by the signal path and the combiner combining the signals from the branches into which input signals are input. The method includes generating uncorrelated noises and mixing them with the input signals, evaluating the output of the combiner based on the input signals and the noises in order to determine a respective contribution of each input signal to the output of the combiner, and accordingly determining an appropriate pre-distortion. The signal path may apply a non-linear and/or dynamic function on the signal.