Abstract:
A method and apparatus can be configured to receive a first scheduling request. The first scheduling request corresponds to a request for a first access point to process data. The method can also include transmitting a second scheduling request. The second scheduling request corresponds to a request to transmit data to a second access point. The transmitting the second scheduling request comprises transmitting the second scheduling request before the data is processed at the first access point.
Abstract:
Various communication systems may benefit from identification of and communication of coverage shortfall. For example, certain communication systems that employ machine type communication devices may benefit from having such shortfall communicated from the devices to a base nation. For example, a method can include determining an amount of coverage shortfall of a device. The method can also include transmitting an indication of the amount of coverage shortfall.
Abstract:
At a wireless node in a wireless network, multiple interference estimation resources are received in a time-frequency resource space. The multiple interference estimation resources are resource elements in an assigned physical shared channel of the time-frequency resource space that do not contain physical shared channel data for the wireless node. An interference covariance matrix is determined from received signals on the multiple interference estimation resources. Symbol estimates are determined for a desired signal based in part by using the interference covariance matrix. Methods, computer programs and products and apparatus are disclosed. The techniques may be used for uplink, downlink, or D2D communications.
Abstract:
A method includes receiving, at a user equipment, a signal including cell-specific reference signals from a number of cells. Cell-specific reference signal(s) are measured from one of the cells to determine measured result(s). The user equipment, based on the measured result(s) meeting first criteria, performs interference cancelation to cancel the cell-specific reference signal(s) corresponding to the one cell from the signal. The user equipment performs the measuring and the performing the interference cancelation for additional ones of the cells until second criteria are met. The user equipment uses measured cell-specific reference signals having their interference canceled to reduce an effect of interference from corresponding cells on communications between the user equipment and a base station. A base station may store cell search information that can be sent to the user equipment to help the user equipment perform the previous method. Apparatus, systems, computer programs, and program products are also disclosed.
Abstract:
A method, apparatus, and computer program product are described that receive an indication of power levels at the base station in a wireless communications system from each user equipment of user equipments served by the base station and determine whether at least one user equipment of those user equipments is capable to overlap at least one same time-frequency resource as at least one user equipment of a remainder of those user equipments. In response to the determination that at least one user equipment is capable to overlap with at least one user equipment of the remainder, then such overlap is scheduled. Based on the overlap being scheduled, packets from the one or more user equipments received are then decoded using an advanced receiver process.
Abstract:
Various communication systems may benefit from identification of and communication of coverage shortfall. For example, certain communication systems that employ machine type communication devices may benefit from having such shortfall communicated from the devices to a base station. For example, a method can include determining an amount of coverage shortfall of a device. The method can also include transmitting an indication of the amount of coverage shortfall.
Abstract:
Systems, methods, apparatuses, and computer program products for random access channel (RACH) design using basis functions are provided. One method includes receiving, at an access point employing a receiver with Q antennas, a random access channel (RACH) preamble sent from a mobile unit. The receiving may comprise receiving the same RACH preamble at B different time intervals where the access point beamforms with a different beam selected from B basis function beams at each of the different time intervals.
Abstract:
At a wireless node in a wireless network, multiple interference estimation resources are received in a time-frequency resource space. The multiple interference estimation resources are resource elements in an assigned physical shared channel of the time-frequency resource space that do not contain physical shared channel data for the wireless node. An interference covariance matrix is determined from received signals on the multiple interference estimation resources. Symbol estimates are determined for a desired signal based in part by using the interference covariance matrix. Methods, computer programs and products and apparatus are disclosed. The techniques may be used for uplink, downlink, or D2D communications.
Abstract:
A method includes receiving, at a first network device from a second network device, a request to probe a network connected to the first network device. The request includes an identification of the second network device. The method also includes determining whether the second network device is authenticated to the network based on the identification. The method further includes in accordance with a determination that the second network device is authenticated to the network, causing a response to the received request to be transmitted to the second network device to enable a connection of the second network device to the network. In this way, the enrollee network device can be onboarded to the existing network in an easy and time-saving manner.
Abstract:
Various communication systems may benefit from identification of and communication of coverage shortfall. For example, certain communication systems that employ machine type communication devices may benefit from having such shortfall communicated from the devices to a base nation. For example, a method can include determining an amount of coverage shortfall of a device. The method can also include transmitting an indication of the amount of coverage shortfall.