Abstract:
There are provided a relative angle detection device suitable for expanding a torque detection range, and a torque sensor, an electric power steering device and a vehicle including the relative angle detection device. Based on a first sine signal representing sin(θos+Δθ) and a first cosine signal representing cos(θos+Δθ) in accordance with a rotation angle(θis) of a first multipolar ring magnet that synchronously rotates with an input shaft from between the coaxially arranged input shaft and an output shaft, and based on a second sine signal representing sin θos and a second cosine signal representing cos θos in accordance with a rotation angle(θos) of a second multipolar ring magnet that synchronously rotates with the output shaft, sin Δθ and cos Δθ are calculated in accordance with a relative angle(Δθ) between the input shaft and the output shaft, and from Δθ=arctan(sin Δθ/cos Δθ), the relative angle(Δθ) is calculated.
Abstract:
An optical sensor, an optical encoder, a torque detection apparatus, and an electric power steering apparatus less affected by fluctuations in the amount of detected light and with an improved resolution are provided. The optical sensor includes a first polarizing layer that splits incident light to light with a first polarization direction, a first photoreceiver that receives first polarized light split by the first polarizing layer, a second polarizing layer that splits the incident light to light with a second polarization direction, and a second photoreceiver that receives second polarized light split by the second polarizing layer. The first photoreceiver and the second photoreceiver are positioned alternatingly and spaced uniformly with each other.
Abstract:
A collection pipette that collects a microscopic object includes a first tube part, a second tube part connected to an end of the first tube part, and a third tube part connected to the other end of the first tube part. The longitudinal direction of the third tube part intersects with the longitudinal direction of the first tube part, and is parallel to the longitudinal direction of the second tube part. For example, the length in the longitudinal direction of the third tube part is shorter than the length in the longitudinal direction of the first tube part.
Abstract:
A robot mechanism is provided with a parallel link including a first output base, a first parallel link mechanism disposed on a first side of the first output base, and a second parallel link mechanism and an end effector disposed on a second side of the first output base. The first parallel link mechanism includes a first driver that generates a linear motion output and a second driver that generates a linear motion output. A tilting link mechanism including a mass body that generates a second moment load in a direction to reduce a first moment load exerted on the first parallel link mechanism by the weight of the second parallel link mechanism and the end effector is connected to the first driver and the second driver.
Abstract:
To provide a torque detection device which allows less deformation of detection coils than in the conventional techniques in axially pressing and holding in yokes, coil bobbins around which the detection coils are wound. A torque sensor includes a pair of coils, coil bobbins around which the coils are respectively wound, yokes which respectively hold the coil bobbins, one yoke cover fitted by pressing into inner diameters of the yokes, and pressing portions which are formed to project radially and outward at a plurality of circumferential positions of a radial outer end portion of respective flange portions of the coil bobbins, and act between the coil bobbins to axially press the coil bobbins during assembly.
Abstract:
A driving device includes a corrector, an actuator, and a position sensor. The actuator includes a nut connected to a movable part, a ball screw shaft onto which the nut is screwed, and a pulse motor that drives to rotate the ball screw shaft. The corrector includes a correction amount map in which a position correction amount for calibrating a predictable error is mapped for each position of the movable part. The corrector estimates an ideal movement position to which the movable part moves based on a command signal and refers to the correction amount map to calculate the position correction amount corresponding to a present position detected by the position sensor. The corrector generates a correction signal by correcting the command signal so as to reduce the difference between a corrected present position obtained by correcting the present position by the position correction amount and the ideal movement position.
Abstract:
Provided are: a joining structure capable of suitably obtaining joining strength between components which compose the joining structure; and a joining method thereof. For this purpose, a joining structure (1) includes: a shaft member (10); and a thin-walled cylindrical member (20) that fits an inner circumferential surface thereof to an outer circumferential surface of the shaft member (10). The thin-walled cylindrical member (20) has: a first crimped portion (21), in which an axially intermediate portion is reduced in diameter in a radial direction, and is crimped to the shaft member (10); and a second crimped portion (22), in which an end surface (20a) is folded radially inward, and is crimped to the shaft member (10).
Abstract:
To provide a vehicle steering control device capable of suppressing influence of a torque generated during driving support by an EPS device on steering of a steering wheel performed by a driver. The vehicle steering control device includes an EPS controller (first controller) that controls a speed reduction mechanism and a differential mechanism controller (second controller) that controls a differential mechanism. In addition, the vehicle steering control device has a first steering assist mode of assisting driver's steering and a second steering assist mode of performing steering independently from the driver's steering. In the second steering assist mode, the second controller controls the differential mechanism so as to cancel a torque applied to a rack-and-pinion side of the differential mechanism from the speed reduction mechanism controlled by the first controller.
Abstract:
A rolling bearing includes an inner ring having an outer surface, an outer ring having an inner surface, a plurality of rolling elements rotatably disposed between the inner ring and the outer ring, and a retainer for retaining the rolling elements. The retainer is made of a resin material and is positioned with respect to the inner surface of the outer ring or the outer surface of the inner ring. The retainer includes a pair of annular portions axially arranged in parallel and a columnar portion coupling the annular portions. Then, the rolling bearing satisfies the following expression: AI=LH3/dm≥0.025 LH3/dm2≥0.025 mm2 in which H is a radial length of a section of the annular portion, L is an axial length of the same, and dm is PCD of the rolling element.
Abstract:
To provide a vehicle steering control device capable of alleviating discomfort caused by mismatch between a steering angle of a steering wheel and a steered angle of a drive wheel generated by automatic steering using an EPS device. The vehicle steering control device has a first steering assist mode of assisting driver's steering and a second steering assist mode of performing steering independently from the driver's steering. A second controller, performs phase shift suppression control to suppress a relative shift of a phase of a differential mechanism on a steering wheel side with respect to a reference phase on the steering wheel side of the differential mechanism corresponding to a phase on a rack-and-pinion side of the differential mechanism in the first steering assist mode.