Abstract:
A human body security inspection apparatus, a method of operating the same, and an associated filter device are disclosed. The human body security inspection apparatus includes a radiation beam exit configured for emitting a radiation beam; a beam guiding box configured for guiding the radiation beam; and a filter device configured between the radiation beam exit and the beam guiding box. The filter device includes a housing and a filter cage having a central axis. The filter cage is formed by arranging two or more pairs of filtering sheets, which are made of different materials and/or have different thicknesses, in an encircling way. The filter cage is rotatable about its central axis such that at least one pair of filtering sheets is capable of filtering the radiation beam to adjust an outputted dosage of the radiation beam of the human body security inspection apparatus.
Abstract:
Human body back-scattering inspection systems and methods are disclosed. In the invention, X-rays modulated by the flying-spot forming unit having spirally distributed flying-spots have a distribution having alternating peaks and valleys on the irradiated surface. In this way, scanning starting times can be precisely controlled to cause two devices to have scanning starting times that are different by a half of a cycle. That is, the beams outputted from one device are at maximum when the beams outputted from the other device are at minimum. In other words, even if the ray source of one device emits rays, it will not significantly affect imaging result of the other device. In such way, the two devices may emit rays and perform scanning at the same time, and thus the total scanning time is reduced.
Abstract:
An inspection system included a ray source to emit a ray, a detector to receive the ray, a detection region for placing an object under inspection, and a moving device to move the ray source and the detector around the detection region. Conventional scanning blind zones such as both sides of a human body, both sides of arms and both sides of legs can be completely eliminated. In addition, it is not necessary for a human body under inspection to carry out an action such as turning around to change his or her posture. Therefore, ineffective time can be minimized in the entire detection and a passing rate of persons under inspection can be improved. Furthermore, an inspected person's mental feeling of being controlled due to change of posture can be greatly improved, and his or her mental discomfort and conflicted moods can be reduced.
Abstract:
Provided is a server of a checking system based on a millimeter wave security inspection device, connected to a security inspection instrument through a switching system, the server includes a memory and a processor, the memory stores instructions, and the instructions, when executed by the processor, cause the processor to: receive a scanned image of an object and an ATR image interpretation result of the object from the security inspection instrument, wherein the ATR image interpretation result is obtained by the security inspection instrument performing an automatic threat recognition (ATR) image interpretation on the scanned image, and perform a manual inspection task on the object and perform an image interpretation task on the scanned image according to a working mode, wherein the working mode indicates whether the checking system is provided with a manual inspection station and an image interpretation station.
Abstract:
The disclosure discloses a millimeter wave security inspection apparatus and a method for inspecting human or article. The apparatus includes: a door device including a first door and a second door arranged in a stacked mode and each made of a material allowing a millimeter wave to penetrate therethrough; a millimeter wave transceiver arranged between the first door and the second door and including an millimeter wave transceiving antenna array configured to transmit and receive a millimeter wave signal to and from an entrance side and an exit side of the door device; and a linear driver to which the millimeter wave transceiver is connected to be movable relative to the door device, so as to scan a first side of an object positioned at the entrance side and a second side of the object opposite to the first side positioned at the exit side.
Abstract:
A human body security inspection system including a plurality of ray emitting-detecting modules, which are configured to emit X-rays to the object to be inspected and to receive X-rays scattered from the object to be inspected, wherein the ray emitting-detecting modules form an enclosed region with respect to the object to be inspected and security inspection is implemented on the object in the enclosed region.
Abstract:
The present application relates to a three-dimensional imaging method and apparatus, and a 3D imaging device. The method comprises generating 3D image information by capturing a 3D capture area containing a detected object using a depth camera; extracting a mask of the detected object from the 3D image information; determining an imaging area associated with the detected object based on the mask of the detected object; collecting data from a holographic data collection area containing the detected object by a holographic data collection device, generating holographic data; and performing image reconstruction on the imaging area based on the holographic data.
Abstract:
A method and a system of performing security inspection of human body based on millimeter-wave. The method includes: displaying, by a first display device, information related to a designated posture to a person to be inspected before the person enters an inspection channel defined by a millimeter-wave human body security inspection instrument, the designated posture being expected to be taken by the person when scanning the person with the instrument; guiding the person to enter the inspection channel and stand at a designated standing position within the inspection channel in a standing posture substantially complying with the designated posture; scanning, by the instrument, the person, to obtain millimeter-wave scanning data; and performing, by a workstation, a reconstruction of millimeter-wave scanning image of the person, a confirmation for the standing posture of the person, and a recognition of a suspected item of the person, based on the millimeter-wave scanning data.
Abstract:
An extensible millimeter wave security inspection system, a security inspection method for a human body using the extensible millimeter wave security inspection system and an extensible millimeter wave scanning unit are disclosed. The extensible millimeter wave security inspection system includes at least one security inspection passage, at least one scanning units are provided on at least one side of two sides of each security inspection passage, each scanning unit includes at least one millimeter wave transceiving module, the millimeter wave transceiving module includes an array of millimeter wave antennas configured to transmit and receive millimeter wave signals and a millimeter wave transceiver associated with the array of millimeter wave antennas, and the millimeter wave transceiving module is arranged to scan by millimeter wave a target to be inspected in the security inspection passage along a direction in which the security inspection passage extends.
Abstract:
The present invention provides a privacy protection method and a human body security inspection system having the same function. The privacy protection method comprises the steps of: acquiring in real-time scanning row or column image data of a personal to be inspected; displaying a physical profile image and an outline image of the personal to be inspected, on basis of the processed image of the scanning row or column image data; transmitting the physical profile image to an equipment end display in a human body security inspection system and displaying it thereon, and displaying the outline image of the personal to be inspected on a remote operation end display of the human body security inspection system; performing the suspicious matter recognition based on the outline image; and correspondingly displaying a suspected frame on the physical profile image, based on the suspicious matter recognized in the outline image.