Abstract:
A human body security inspection apparatus, a method of operating the same, and an associated filter device are disclosed. The human body security inspection apparatus includes a radiation beam exit configured for emitting a radiation beam; a beam guiding box configured for guiding the radiation beam; and a filter device configured between the radiation beam exit and the beam guiding box. The filter device includes a housing and a filter cage having a central axis. The filter cage is formed by arranging two or more pairs of filtering sheets, which are made of different materials and/or have different thicknesses, in an encircling way. The filter cage is rotatable about its central axis such that at least one pair of filtering sheets is capable of filtering the radiation beam to adjust an outputted dosage of the radiation beam of the human body security inspection apparatus.
Abstract:
The present disclosure provides an X-ray backscattering safety inspection system, comprising: one or more backscattering inspection subsystem configured to inspect an object to be inspected by emitting X-ray beams towards the object to be inspected and inspecting scattering signals; and a control subsystem configured to adjust a distance between the backscattering inspection subsystem and locations on a side of the object to be inspected where are irradiated by the X-ray beams in real time according to a size of the object to be inspected such that the scattering signals inspected are optimized. The system may be adapted to objects to be inspected with different sizes or shapes while enhancing backscattering signals for imaging.
Abstract:
A human body back-scattering inspection method and system are discloses. The method includes: obtaining a back-scattering scan image of a human body under inspection; distinguishing a body image from a background image in the back-scattering scan image; and calculating a feature parameter of the background image to determine whether radioactive substance is carried with the human body. With some embodiments of the present disclosure, it is possible to determine whether any radioactive substance is carried with a human body during back-scattering inspection of the human body. In further embodiments of the present disclosure, it is possible to approximately determine which part(s) of the human body carries the radioactive substance. This improves efficiency of inspection.
Abstract:
A human body back-scattering inspection system is disclosed. The system comprises a flying-spot forming unit configured to output beams of X-rays, a plurality of discrete detectors which are arranged vertically along a human body to be inspected, and a controlling unit coupled to the flying-spot forming unit and the plurality of detectors, and configured to generate a control signal to control the flying-spot forming unit and the plurality of detectors to perform a partition synchronous scan on the human body to be inspected vertically. The present disclosure utilizes the geometry property of the human body back-scattering inspection system, and proposes a multiple-point synchronous scan mechanism which largely accelerates the inspection of human body.
Abstract:
The present disclosure provides an X-ray backscattering safety Inspection system, comprising: one or more backscattering inspection subsystem configured to inspect an object to be inspected by emitting X-ray beams towards the object to be inspected and inspecting scattering signals; and a control subsystem configured to adjust a distance between the backscattering inspection subsystem and locations on a side of the object to be inspected where are irradiated by the X-ray beams in real time according to a size of the object to be inspected such that the scattering signals inspected are optimized. The system may be adapted to objects to be inspected with different sizes or shapes while enhancing backscattering signals for imaging.
Abstract:
The present invention discloses a through-type of millimetre wave person body security inspection system, wherein a person to be inspected passes through an inspect passage therein for performing a security inspection. The through-type of millimetre wave person body security inspection system provided in accordance with the present invention can make a total body dynamic scanning to the person to be inspected, and obtain millimetre wave images and optical images with respect to the person body, thereby achieving the inspection of prohibited articles hidden within clothing of the person body and an automatic alarm thereof.
Abstract:
A millimeter wave security check gate is provided, comprising: a gate body; and a top millimeter wave imaging system, comprising: a millimeter wave transceiving antenna array disposed at a top of the gate body, wherein the millimeter wave transceiving antenna array comprises at least one transmitting antenna unit and a plurality of receiving antenna units; and a millimeter wave signal source connected with the millimeter wave transceiving antenna array.
Abstract:
The present disclosure provides a mobile back scattering imaging security inspection apparatus, comprising: a back scattering scanner (2), a detector (3), a controller (4), and a movable stage (1) configured to carry the back scattering scanner, the detector and the controller and being movable with respect to the object to be inspected; wherein the back scattering scanner is a distributed X-ray source comprising a plurality of target points (201), each of which is able to emit the ray beam individually, and wherein the back scattering scanner, the detector and the controller perform an imaging security inspection operation on the object to be inspected during moving along with the movable stage with respect to the object.
Abstract:
The present disclosure provides an X-ray generator with adjustable collimation. The X-ray generator comprises: an assembly of X-ray source, which includes an X-ray tube having a cathode and an anode and a front collimator; a high voltage generator, which is disposed in an extended chamber of a housing for the X-ray tube and which is used for supplying a direct current high voltage between the cathode and the anode of the X-ray tube to excite X-ray beams; a collimation adjustment unit, which is rotatably disposed outside of the front collimator and which is used for adjusting fan-type X-ray beams into continuous pencil-type X-ray beams; and a cooling unit, which is independently mounted to the X-ray tube and which is used for cooling the anode of the X-ray tube; wherein, the assembly of X-ray source, the high voltage generator, the collimation adjustment unit and the cooling unit are integrated as a whole. The X-ray generator with adjustable collimation according to the disclosure has a compact construction, which is helpful in miniaturization, modularization and high efficiency of a security detection equipment.