Abstract:
Embodiments of the present invention are operable to perform automatic white balancing operations on images captured by a camera system through the use of weights derived through crowdsourcing procedures. Embodiments of the present invention use crowdsourced weight data resident on the camera system in combination with sampled image data of a captured image to determine a likely illuminant source. When performing automatic white balancing operations on the captured image, embodiments of the present invention may also compute a confidence score which may present the user with a choice to either use the likely illuminant determined using the crowdsourced weights or the camera system's default or normal automatic white balancing correction algorithm.
Abstract:
Systems and methods for generating high dynamic images from interleaved Bayer array data with high spatial resolution and reduced sampling artifacts. Bayer array data are demosaiced into components of the YUV color space before deinterleaving. The Y component and the UV components can be derived from the Bayer array data through demosiac convolution processes. A respective convolution is performed between a convolution kernel and a set of adjacent pixels of the Bayer array that are in the same color channel. A convolution kernel is selected based the mosaic pattern of the Bayer array and the color channels of the set of adjacent pixels. The Y data and UV data are deinterleaved and interpolated into frames of short exposure and long exposures in the second color space. The short exposure and long exposure frames are then blended and converted back to a RGB frame representing a high dynamic range image.
Abstract:
Embodiments of the present invention are operable to generate a set of weights derived through crowdsourcing procedures for use in automatically performing white balancing operations on images captured by a digital camera system. Embodiments of the present invention are operable to generate a set of images which are illuminated with known and different illuminants. Using crowdsourcing procedures, embodiments of the present invention gather user feedback concerning which images from the set of images adjusted by the known illuminants are considered to be the most aesthetically pleasing. Images selected by the users are then stored within a database of selected images. Using a learning engine, embodiments of the present invention may then produce a set of weights based on the user selected images for use in determining a likely illuminant when performing automatic white balancing operations performed on the camera system.
Abstract:
A system and method for correcting image data. Embodiments of the present invention provide calibration and image correction to overcome various lens effects including lens shading and lens imperfections. In one embodiment, the correction of image data is performed via utilization of a spline surface (e.g., Bezier surface). The use of spline surfaces facilitates efficient hardware implementation. The image correction may be performed on a per channel and illumination type basis. In another embodiment, the present invention provides a method for determine a spline surface to be used for calibrating an image signal processor to be used in correcting image data.