摘要:
The present invention provides a proportional microvalve having a first, second and third layer, and having high aspect ratio geometries. The first layer defines a cavity with inlet and outlet ports. The second layer, doped to have a low resistivity and bonded between the first and third layers, defines a cavity having a flow area to permit fluid flow between the inlet and outlet ports. The second layer further defines an actuatable displaceable member, and one or more thermal actuators for actuating the displaceable member to a position between and including an open and a closed position to permit or occlude fluid flow. The third layer provides one wall of the cavity and provides electrical contacts for electrically heating the thermally expandable actuators. The thermal actuators and the displaceable member have high aspect ratios and are formed by deep reactive ion etching such that they are displaceable in the plane of the second layer while being very stiff out of the plane. Thus, both actuation and displacement of the displaceable member are in the plane of the layer.
摘要:
The present invention provides a proportional microvalve having a first, second and third layer, and having high aspect ratio geometries. The first layer defines a cavity with inlet and outlet ports. The second layer, doped to have a low resistivity and bonded between the first and third layers, defines a cavity having a flow area to permit fluid flow between the inlet and outlet ports. The second layer further defines an actuatable displaceable member, and one or more thermal actuators for actuating the displaceable member to a position between and including an open and a closed position to permit or occlude fluid flow. The third layer provides one wall of the cavity and provides electrical contacts for electrically heating the thermally expandable actuators. The thermal actuators and the displaceable member have high aspect ratios and are formed by deep reactive ion etching such that they are displaceable in the plane of the second layer while being very stiff out of the plane. Thus, both actuation and displacement of the displaceable member are in the plane of the layer.
摘要:
The present invention provides a proportional microvalve having a first, second and third layer, and having high aspect ratio geometries. The first layer defines a cavity with inlet and outlet ports. The second layer, doped to have a low resistivity and bonded between the first and third layers, defines a cavity having a flow area to permit fluid flow between the inlet and outlet ports. The second layer further defines an actuatable displaceable member, and one or more thermal actuators for actuating the displaceable member to a position between and including an open and a closed position to permit or occlude fluid flow. The third layer provides one wall of the cavity and provides electrical contacts for electrically heating the thermally expandable actuators. The thermal actuators and the displaceable member have high aspect ratios and are formed by deep reactive ion etching such that they are displaceable in the plane of the second layer while being very stiff out of the plane. Thus, both actuation and displacement of the displaceable member are in the plane of the layer.
摘要:
Disclosed is a microvalve suitable for use in high pressure applications such as refriigeration. The microvalve has a displaceable member that slides across an inlet port, thereby creating an orifice. A pressure-equalizing contour is positioned beneath the displaceable member and is in fluid contact with the inlet port. The pressure on the displaceable member from the inlet port is equalized by the pressure from the pressure-equalizing contour. Consequently, the microvalve can be configured with its inlet port and outlet port on opposite sides of the microvalve. Pressures in the x and y direction are also equalized because of recesses that permit fluid from the inlet to contact all faces of the displaceable member.
摘要:
A gauge or differential pressure sensor has a base portion having walls which define a cavity within the base portion and a diaphragm portion positioned over the cavity. The base portion comprises silicon; the diaphragm portion comprises silicon; the substrate has a passageway from a surface of the substrate into the chamber; the walls of the cavity form an angle with the diaphragm of no more than ninety degrees; and the chamber has a depth of at least about 5 microns. Preferably, the pressure sensor has a lip within the passageway which prevents an adhesive used to glue the sensor to a base from flowing to the diaphragm and fouling it. The pressure sensor is made by forming a cavity in a first wafer, fusion bonding a second wafer over the first wafer in an oxidizing environment, and using the thin oxide formed when fusion bonding the wafers as an etch stop when opening the cavity to the atmosphere. Etch conditions are selected to form the preferred lip in the passageway. The pressure sensor has improved accuracy and reliability as well as small size.
摘要:
Thin film masks with precisely located and positioned features are manufactured using a methodology herein called quantum lithography. A thin film layer, such as a chromium film, is deposited on a substrate such as quartz glass. Then, a set of precisely located dividing lines is defined in the thin film layer. The dividing lines are spaced in accordance with a predefined coordinate system and intersect so as to define tiles between the dividing lines. An electron beam pattern generator may be used to generate a large number of identical masks having a thin film with precisely located dividing lines. These masks will each be customized by subsequent processing steps. Each such mask is customized by selectively identifying a subset of the tiles and removing the selected subset of tiles to form a mask pattern in the thin film layer. The resulting pattern has very precisely located edges because the edges correspond to dividing lines formed using a precision patterning system, such an electron beam pattern generator. However, the actual light blocking pattern of the mask can be defined using a much lower accuracy pattern generator. An alternate embodiment of the invention uses a quantized additive process. A set of precisely located boundary lines are formed on a substrate to form a generic mask. The generic mask is customized by removing a subset of the boundary lines, and then selectively depositing a masking material inside the closed regions defined by the remaining boundary lines.
摘要:
A gauge or differential pressure sensor has a base portion having walls which define a cavity within the base portion and a diaphragm portion positioned over the cavity. The base portion comprises silicon; the diaphragm portion comprises silicon; the substrate has a passageway from a surface of the substrate into the chamber; the walls of the cavity form an angle with the diaphragm of no more than ninety degrees; and the chamber has a depth of at least about 5 microns. Preferably, the pressure sensor has a lip within the passageway which prevents an adhesive used to glue the sensor to a base from flowing to the diaphragm and fouling it. The pressure sensor is made by forming a cavity in a first wafer, fusion bonding a second wafer over the first wafer in an oxidizing environment, and using the thin oxide formed when fusion bonding the wafers as an etch stop when opening the cavity to the atmosphere. Etch conditions are selected to form the preferred lip in the passageway. The pressure sensor has improved accuracy and reliability as well as small size.
摘要:
A diffraction grating, diffraction structure or Fresnel zone device is formed on a first substrate for diffracting light components of different wavelengths. An array of detectors is formed on a second substrate for detecting different wavelength components diffracted where the second substrate is spaced apart from the grating, structure or device to form a spectrometer. Spectrometers sensitive to the particular spectral lines may be used for detecting the presence of substances. The spectral resolution at such spectral lines may be increased relative to other regions to enhance the sensitivity of detection. This is done by inverse Fourier transform of the desired discrete spectrum to obtain a desired transmission function and by half-toning the aperture function.