Abstract:
Si/SiO2 core/shell nanostructures with sizes below 30 nm as trapping points in UV curable hybrid organic-inorganic gate dielectrics are presented in order to investigate printable nano floating gate transistors. Not only does the novelty of this invention comes from fabricating high-quality hybrid organic/inorganic gate dielectric layer by Sol-Gel process at low temperature but also incorporating the monolayer of high-density of Si nanoparticles (NPs) without obvious interface defects and keeping the quality of dielectric layers. Fixed-charge trapping defects are successfully removed from hybrid dielectrics by UV curing together with low temperature thermal curing and mobile charges solely related to Si/SiO2 core/shell nanostructures on charge trapping layer clearly demonstrate memory effects on printable device. Thin/uniform SiO2 shell on each Si NP functions as tunneling layer of flash memory devices, significantly simplifying the fabrication of printable nano floating gate memory device.